分析 (1)求出函数的导数,化简整理,即可解得所求值;
(2)由题意可得f′(x)=a+$\frac{1}{x}$≤0在[1,+∞)上恒成立,即有a≤-$\frac{1}{x}$的最小值,由单调性即可求得a的范围.
解答 解:(1)函数f(x)=ax+lnx的导数为
f′(x)=a+$\frac{1}{x}$,
即有f′(x0)=a+$\frac{1}{{x}_{0}}$=
$\frac{f(e)-f(1)}{e-1}$=$\frac{ae+1-(a+0)}{e-1}$=a+$\frac{1}{e-1}$,
解得x0=e-1;
(2)由函数f(x)在[1,+∞)上单调递减,可得
f′(x)=a+$\frac{1}{x}$≤0在[1,+∞)上恒成立,
即有a≤-$\frac{1}{x}$的最小值,由x≥1,可得-$\frac{1}{x}$≥-1.
则有a≤-1.
即有a的取值范围是(-∞,-1].
点评 本题考查导数的运用:求单调区间,考查不等式恒成立问题的解法,注意转化为求函数的最值,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2)∪(3,+∞) | B. | (-2,3) | C. | (-∞,-3)∪(2,+∞) | D. | (-3,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4π | C. | 6π | D. | 12π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com