精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=Asin($\frac{1}{2}$x+φ),x∈R(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.设点C($\frac{2π}{3}$,4)是图象上y轴右侧的第一个最高点,CD⊥DB,则△BDC的面积是(  )
A.3B.C.D.12π

分析 由函数的图象的顶点坐标求出A,根据五点法作图求得φ的值,可得函数f(x)的解析式,从而求得△BDC的面积是$\frac{1}{2}$•BD•CD 的值.

解答 解:由题意可得$\frac{1}{2}$×$\frac{2π}{3}$+φ=$\frac{π}{2}$,求得φ=$\frac{π}{6}$.再根据点C是最高点可得 A=4,函数f(x)=4sin($\frac{1}{2}$x+$\frac{π}{6}$).
又BD=$\frac{3}{4}$•T=$\frac{3}{4}$•$\frac{2π}{\frac{1}{2}}$=3π,CD⊥DB,可得△BDC的面积是$\frac{1}{2}$•BD•CD=6π,
故选:C.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,根据五点法作图求得φ的值,可得函数f(x)的解析式从而求得△BDC的面积,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=1og4(4x+1)+kx(x∈R)是偶函数.
(1)求实数k的值;
(2)若函数g(x)=f(x)-m有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.给出下列四个命题:
①曲线y=x3在(0,0)处没有切线;
②已知随机变量X服从正态分布N(1,σ2),P(X≤5)=0.81,则P(X≤-3)=0.19;
③线性相关系数r的绝对值越接近于1,表明两个变量线性相关程度越弱;
④定义运算$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{b}_{1}}&{{b}_{2}}\end{array}|$=a1b2-a2b1,则函数f(x)=$|\begin{array}{l}{{x}^{2}+3x}&{1}\\{x}&{\frac{1}{3}x}\end{array}|$的图象在点(1,$\frac{1}{3}$)处的切线方程是6x-3y-5=0.
其中真命题的序号是②④(请把所有真命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ax+lnx,x∈[1,+∞)
(1)若f′(x0)=$\frac{f(e)-f(1)}{e-1}$,求x0的值;
(2)若函数f(x)在[1,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若等比数列{an},满足a2+a4=40,a3+a5=80,则公比q=2,前n项和Sn=2n+2-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.第11届全国人大五次会议于2012年3月5日至3月14日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(I)根据以上数据完成以下2X2列联表:
会俄语不会俄语总计
10616
6814
总计161430
并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d
参考数据:
P(K2≥k00.400.250.100.010
k00.7081.3232.7066.635
(II)若从14名女记者中随机抽取2人担任翻译工作,记会俄语的人数为ξ,求ξ的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a1=3,an+1=an2-2,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.计算:log${\;}_{\root{3}{3}}$$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,函数f(x)=lnx-ax
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线l与曲线C:ρ=-2cosθ相切,求a的值;
(Ⅱ) 求f(x)的在(0,1]上的最大值.(本题极点在坐标原点,极轴为X轴)

查看答案和解析>>

同步练习册答案