精英家教网 > 高中数学 > 题目详情
2.已知a1=3,an+1=an2-2,求an的通项公式.

分析 通过令an=tn+$\frac{1}{{t}_{n}}$,利用a1=t1+$\frac{1}{{t}_{1}}$=3可知t1=$\frac{3±\sqrt{5}}{2}$,利用an+1=an2-2整理得(tn+1-${{t}_{n}}^{2}$)(1-$\frac{1}{{{t}_{n}}^{2}{t}_{n+1}}$)=0,分tn+1=${{t}_{n}}^{2}$、tn+1=$\frac{1}{{{t}_{n}}^{2}}$两种情况、利用对数有关知识讨论即得结论.

解答 解:令an=tn+$\frac{1}{{t}_{n}}$,则tn+1+$\frac{1}{{t}_{n+1}}$=${{t}_{n}}^{2}$+$\frac{1}{{{t}_{n}}^{2}}$,
整理得:(tn+1-${{t}_{n}}^{2}$)(1-$\frac{1}{{{t}_{n}}^{2}{t}_{n+1}}$)=0,
∴tn+1=${{t}_{n}}^{2}$或tn+1=$\frac{1}{{{t}_{n}}^{2}}$,
又∵a1=t1+$\frac{1}{{t}_{1}}$=3,
∴t1=$\frac{3±\sqrt{5}}{2}$,
当tn+1=${{t}_{n}}^{2}$时,即lgtn+1=2lgtn
∴lgtn=2n-1lgt1,即tn=${{t}_{1}}^{{2}^{n-1}}$=$(\frac{3±\sqrt{5}}{2})^{{2}^{n-1}}$,
∴an=$(\frac{3-\sqrt{5}}{2})^{{2}^{n-1}}$+$(\frac{3+\sqrt{5}}{2})^{{2}^{n-1}}$;
同理可知当tn+1=$\frac{1}{{{t}_{n}}^{2}}$时,an=$(\frac{3-\sqrt{5}}{2})^{{2}^{n-1}}$+$(\frac{3+\sqrt{5}}{2})^{{2}^{n-1}}$;
综上所述,an=$(\frac{3-\sqrt{5}}{2})^{{2}^{n-1}}$+$(\frac{3+\sqrt{5}}{2})^{{2}^{n-1}}$.

点评 本题考查数列的通项,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\sqrt{x-4}$,g(x)=$\sqrt{4-x}$,在f(x)+g(x)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若数列$\sqrt{2}$,$\sqrt{5}$,2$\sqrt{2}$,…,则2$\sqrt{5}$是这个数列的第(  )项.
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin($\frac{1}{2}$x+φ),x∈R(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.设点C($\frac{2π}{3}$,4)是图象上y轴右侧的第一个最高点,CD⊥DB,则△BDC的面积是(  )
A.3B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知平面a和直线l,则a内至少有一条直线与l(  )
A.平行B.相交C.垂直D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若已知x,y满足x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的取值范围;
(2)x2+y2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列,数列{bn}的前n项和为Tn,且Tn=2bn-2(n∈N*).
(1)求数列{an}的前n项和Sn
(2)求数列{bn}的通项公式;
(3)记集合M={n|$\frac{{S}_{n}}{{b}_{n}}$≥λ,n∈N*},若集合M中有且仅有4个元素,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}中,Sn=2n-1,则a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+…+a${\;}_{n}^{2}$=$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-4x2+5x-4,求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

同步练习册答案