精英家教网 > 高中数学 > 题目详情
20.已知a>0,函数f(x)=lnx-ax
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线l与曲线C:ρ=-2cosθ相切,求a的值;
(Ⅱ) 求f(x)的在(0,1]上的最大值.(本题极点在坐标原点,极轴为X轴)

分析 (Ⅰ)曲线C:ρ=-2cosθ化为直角坐标方程,求出曲线y=f(x)在点(1,f(1))处的切线l,利用曲线y=f(x)在点(1,f(1))处的切线l与曲线C:ρ=-2cosθ相切,建立方程,即可求a的值;
(Ⅱ)求导数,分类讨论,确定函数的单调性,即可求f(x)的在(0,1]上的最大值.

解答 解:(Ⅰ)曲线C:(x-1)2+y2=1,
$f'(x)=\frac{1}{x}-a∴f'(1)=1-a,f(1)=-a$
所以切线为(1-a)x-y-1=0
因为曲线y=f(x)在点(1,f(1))处的切线l与曲线C:ρ=-2cosθ相切,
所以$\frac{|a|}{{\sqrt{{{(1-a)}^2}+1}}}=1⇒a=1$;
(Ⅱ)$f'(x)=\frac{1}{x}-a=\frac{1-ax}{x}(x>0)$
①当$\frac{1}{a}≥1$,即0<a≤1时,f'(x)<0在(0,1)恒成立,f(x)max=f(1)=-a
②当$\frac{1}{a}<1$,即a>1时,f(x)在$(0,\frac{1}{a})$增,在$(\frac{1}{a},1)$减,$f{(x)_{max}}=f(\frac{1}{a})=-lna-1$

点评 本题考查导数知识的综合运用,考察直线与圆的位置关系,考查函数的单调性与最大值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=Asin($\frac{1}{2}$x+φ),x∈R(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.设点C($\frac{2π}{3}$,4)是图象上y轴右侧的第一个最高点,CD⊥DB,则△BDC的面积是(  )
A.3B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}中,Sn=2n-1,则a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+…+a${\;}_{n}^{2}$=$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数y=f(x)在(0,+∞)上递增且f($\frac{1}{2}$)=0,则满足f(log${\;}_{\frac{1}{9}}$x)>0的x的集合为(0,$\frac{1}{3}$)∪(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P(A),P(B),P(C),则(  )
A.P(A)=P(B)<P(C)B.P(A)<P(B)<P(C)C.P(A)<P(B)=P(C)D.P(C)=P(B)<P(A)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),若对于任意n∈N*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=$\frac{px+1}{x+1}$确定数列{an}的自反数列为{bn},求an
(2)已知正数数列{cn}的前n项之和Sn=$\frac{1}{2}({{c_n}+\frac{n}{c_n}})$,写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=$\frac{-1}{{{a_n}S_n^2}}$,Dn是数列{dn}的前n项之和,且$\lim_{n→∞}{D_n}$>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-4x2+5x-4,求经过点A(2,-2)的曲线f(x)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列的前n项和Sn是n的二次函数,且前三项依次为-2,0,6,则a100=588.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知3m2+2m-3=0,3n2+2n-3=0(m≠n),求$\frac{m}{n}+\frac{n}{m}$=$-\frac{22}{9}$;.

查看答案和解析>>

同步练习册答案