精英家教网 > 高中数学 > 题目详情
F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,过F1的直线l与C的左右两支分别交于AB两点,若BF2⊥AB,且线段AB,BF2,AF2长度成等差数列,则e=
 
考点:双曲线的简单性质
专题:等差数列与等比数列,圆锥曲线的定义、性质与方程
分析:运用双曲线的定义和等差数列的性质,计算即可得到|BF2|=4a,再在直角三角形BF1F2中,运用勾股定理,结合离心率公式,计算即可得到.
解答: 解:设|BF2|=n,
由双曲线的定义可得,|BF1|=|BF2|+2a=n+2a,
设|AF2|=m,由线段AB,BF2,AF2长度成等差数列,
即有2|BF2|=|AB|+|AF2|,
即为2n=|AB|+m,
即|AB|=2n-m,
由双曲线的定义可得,|AF1|=|AF2|-2a=m-2a,
即有|BF1|=|AB|+|AF1|=2n-2a,
则2n-2a=n+2a,即为n=4a,
在直角三角形BF1F2中,
|F1F2|2=|BF1|2+|BF2|2
即有4c2=(2n-2a)2+n2=(6a)2+16a2
即有c2=13a2
即离心率e=
c
a
=
13

故答案为:
13
点评:本题考查双曲线的定义和性质,主要考查离心率的求法,同时考查等差数列的性质,运用双曲线的定义和勾股定理是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式的值
1
4
-1+(
1
6
6
 
1
3
+
3
+
2
3
-
2
-(1.03)0•(-
6
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-3sin2x-cos2x+2.
(1)当x∈[0,
π
2
]时,求f(x)的值域;
(2)若△ABC的内角A,B,C的对边分别为a,b,c,且满足
b
a
=
3
sin(2A+C)
sinA
=2+2cos(A+C),求f(B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD-A1B1C1D1是底面为正方形的长方体,A1D1=2,A1A=2
3
,点P为动点,
(1)当P为AD1得中点时,求异面直线AA1与B1P所成角的余弦值;
(2)当PB1与平面AA1D1所成角的正切值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
-
OB
+3
OC
,且P、A、B、C四点共面,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,曲线C与y轴相交于B1、B2两点,点M是曲线C上,且不同于B1、B2,直线B1M、MB2与x轴分别交于P、Q
(1)若曲线C的方程为
x2
4
+y2=1,求证:|OP|•|OQ|=4;
(2)若曲线C的方程为x2+y2=r2,且|OP|•|OQ|=3,求半径r的值;
(3)对上述曲线外的其他二次曲线,类比第(1)或第(2)题的问题,你能发现什么结论?试解答你提出的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC与BD的交点.
(1)求证:BD⊥A1F;
(2)求直线BE与平面A1EF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个结论:
(1)如图Rt△ABC中,|AC|=2,∠B=90°,∠C=30°.D是斜边AC上的点,|CD|=|CB|.以B为起点任作一条射线BE交AC于E点,则E点落在线段CD上的概率是
3
2

(2)设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为
y
=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
(3)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,应该用独立性检验最有说服力;
(4)已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79,则P(ξ≤-2)=0.21;其中正确结论的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=(
2
3
n-1[(
2
3
n-1-1](n∈N*),求数列{an}的最大项与最小项.

查看答案和解析>>

同步练习册答案