精英家教网 > 高中数学 > 题目详情
设空间任意一点O和不共线三点A、B、C,若点P满足向量关系
OP
=x
OA
-
OB
+3
OC
,且P、A、B、C四点共面,则x=
 
考点:平面向量的基本定理及其意义
专题:平面向量及应用
分析:利用空间向量四点共面基本定理即可得出.
解答: 解:∵空间任意一点O和不共线三点A、B、C,点P满足向量关系
OP
=x
OA
-
OB
+3
OC
,且P、A、B、C四点共面,
则x-1+3=1,解得x=-1.
故答案为:-1.
点评:本题考查了空间向量四点共面基本定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

确定下列式子的符号:
(1)tan125°•sin273°;
(2)sin
5
4
π•cos
4
5
π•tan
11
6
π.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=|-x2+4x-3|的图象C与直线y=kx相交于点M(2,1),那么曲线C与该直线的交点的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PD⊥平面ABCD,AD⊥PC,AD∥BC,PD:DC:BC=1:1:
2
.求:
(1)直线PB与与平面ABCD所成角的大小;
(2)直线PB与平面PDC所成角的大小.
(3)直线PC与平面PBD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方形ABCD的边长为2,P是平面ABCD外一点,且PA=PB=PC=PD=2
2
,则PA与平面ABCD所成的角是(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦点,过F1的直线l与C的左右两支分别交于AB两点,若BF2⊥AB,且线段AB,BF2,AF2长度成等差数列,则e=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用归纳法证明:?n∈N*,3n>n2-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定长为3的线段MN的两个端点M、N分别在x轴、y轴上滑动,动点P满足
NP
=2
PM

(1)求点P的轨迹方程;
(2)点P的轨迹设为曲线T,设△ABC是曲线T的内接三角形,其中A是T与x轴正半轴的交点.直线AB、AC斜率的乘积为-
1
4
,求证△ABC的重心G为定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

从古印度的汉诺塔传说演变了一个汉诺塔游戏:如图,有三根杆子A、B、C,A杆上有三个碟子(大小不等,自上到下,由小到大),每次移动一个碟子,小的只能叠在大的上面,把所有的碟子从A杆移到C杆上,试设计一个算法,完成上述游戏.

查看答案和解析>>

同步练习册答案