精英家教网 > 高中数学 > 题目详情

某公司招聘员工采取两次考试(笔试)的方法:第一试考选择题,共10道题(均为四选一题型),每题10分,共100分;第二试考解答题,共3题。规则是:只有在一试中达到或超过80分者才获通过并有资格参加二试,参加二试的人只有答对2题或3题才能被录用。现有甲、乙两人参加该公司的招聘考试。且已知在一试时:两人均会做10道题中的6道;对于另外4道题来说,甲有两题可排除两个错误答案、有两题完全要猜,乙有两题可排除一个错误答案、有一题可排除两个错误答案、有一题完全要猜。进入二试后,对于任意一题,甲答对的概率是、乙答对的概率是.(1)分别求甲、乙两人能通过一试进入二试的概率;(2)求甲、乙两人都能被录用的概率.

(1), ;(2)甲、乙都能被录取的概率是.

解析试题分析:(1)两人都已稳得60分,另外至少还要得20分,所以只需考虑另外4个.这4个题中答对2个或3个或4 个均可进入第二轮,三种情况的概率相加即得.也可以求出不能进入第二轮的概率,用1减去这个概率即得能进入二轮的概率.
(2)分别求出甲、乙能被录取的概率相乘即得甲、乙都能被录取的概率.
试题解析:(1)据条件有
,所以
     4分
同理       6分
(2)甲能被录取的概率是    8分
乙能被录取的概率是    10分
所以甲、乙都能被录取的概率是    12分
考点:古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲、乙两名教师进行乒乓球比赛,采用七局四胜制(先胜四局者获胜).若每一局比赛甲获胜的概率为,乙获胜的概率为,现已赛完两局,乙暂时以2∶0领先.
(1)求甲获得这次比赛胜利的概率;
(2)设比赛结束时比赛的局数为随机变量X,求随机变量X的概率分布和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):

 
围棋社
舞蹈社
拳击社
男生
5
10
28
女生
15
30
m
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人.
(Ⅰ)求拳击社团被抽出的6人中有5人是男生的概率;
(Ⅱ)设拳击社团有X名女生被抽出,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

电子蛙跳游戏是:青蛙第一步从如图所示的正方体顶点起跳,每步从一顶点跳到相邻的顶点.

(1)求跳三步跳到的概率
(2)青蛙跳五步,用表示跳到过的次数,求随机变量的概率分布及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为贯彻“激情工作,快乐生物”的理念,某单位在工作之余举行趣味知识有奖竞赛,比赛分初赛和决赛两部分,为了增加节目的趣味性,初赛采用选手选—题答—题的方式进行,每位选手最多有5次选答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰,已知选手甲答题的正确率为.
(1)求选手甲答题次数不超过4次可进入决赛的概率;
(2)设选手甲在初赛中答题的个数,试写出的分布列,并求的数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用分层抽样方法从高中三个年级的相关人员中抽取若干人组成研究小组,有关数据见下表:(单位:人)

(Ⅰ)求,
(Ⅱ)若从高二、高三年级抽取的人中选人,求这2人都来自高二年级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

同时抛掷两枚大小形状都相同、质地均匀的骰子,求:
(1)一共有多少种不同的结果;
(2)点数之和4的概率;
(3)至少有一个点数为5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某社区举办防控甲型H7N9流感知识有奖问答比赛,甲、乙、丙三人同时回答一道卫生知识题,三人回答正确与错误互不影响。已知甲回答这题正确的概率是,甲、丙两人都回答错误的概率是,乙、丙两人都回答正确的概率是.
(I)求乙、丙两人各自回答这道题正确的概率;
(II)用表示回答该题正确的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.
(1)求的值,
(2)设在甲、乙、丙三人中破译出密码的总人数为X,求X的分布列和数学期望E(X).

查看答案和解析>>

同步练习册答案