精英家教网 > 高中数学 > 题目详情
1.已知点A(0,-3),B(2,3),点P在x2=y上,当△PAB的面积最小时,点P的坐标是(  )
A.(1,1)B.($\frac{3}{2}$,$\frac{9}{4}$)C.($\frac{2}{3}$,$\frac{4}{9}$)D.(2,4)

分析 先求出直线AB的方程,设出与AB平行的直线是抛物线的切线,欲使得△PAB的面积最小,只须点P到直线AB的距离最小即可,直线与抛物线方程联立消去y,再根据判别式等于0求得t,代入方程求得x,进而求得y,答案可得.

解答 解:∵A(0,-3),B(2,3),kAB=3.
∴直线AB的方程y=3x-3,
设直线y=3x+t是抛物线的切线,△PAB高的最小值是两直线之间的距离,
代入x2=y化简得x2-3x-t=0
由△=0得t=-$\frac{9}{4}$.此时x=$\frac{3}{2}$,y=$\frac{9}{4}$
∴P为($\frac{3}{2}$,$\frac{9}{4}$)
故选:B.

点评 本题主要考查抛物线的应用和抛物线与直线的关系.考查了学生综合分析和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.12πB.18πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\overrightarrow a$=(x-1,2),$\overrightarrow b$=(2,1),则$\overrightarrow a$∥$\overrightarrow b$的充要条件是(  )
A.$x=-\frac{1}{2}$B.x=-1C.x=5D.x=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面有四个命题:
①函数y=tan x在每一个周期内都是增函数.
②函数y=sin(2x+$\frac{5π}{4}$)的图象关于直线x=$\frac{π}{8}$对称;
③函数y=tanx的对称中心(kπ,0),k∈Z.
④函数y=sin(2x-$\frac{π}{2}$)是偶函数.
其中正确结论个数(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等差数列前三项为a,4,3a,前n项的和为Sn,若Sk=90.
(1)求a及k的值;   
(2)设bn=$\frac{1}{{S}_{n}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)(x∈R)满足f(1)=1,且f(x)的导函数f′(x)<$\frac{1}{2}$,则不等式f(x2)<$\frac{{x}^{2}}{2}$+$\frac{1}{2}$的解集为(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=a-$\frac{2}{{2}^{x}+1}$,x∈R,a为常数;
(1)当a=1时,判断f(x)的奇偶性;
(2)求证:f(x)是R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线mx+y-m-1=0(m是参数且m∈R)过定点(  )
A.(1,-1)B.(-1,1)C.(1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.定义在[-1,1]上的奇函数f(x)满足当0<x≤1时,f(x)=$\frac{2^x}{{{4^x}+1}}$,
(1)求f(x)在[-1,1]上的解析式;
(2)判断并证明f(x)在[-1,0)上的单调性;
(3))当x∈(0,1]时,方程$\frac{2^x}{f(x)}$-2x-m=0有解,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案