精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的参数方程为(θ是参数),直线l的极坐标方程为(ρ∈R)
(Ⅰ)求C的普通方程与极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|的值.

【答案】解:(Ⅰ)由sin2θ+cos2θ=1,可得
圆C的普通方程是(x﹣2+(y﹣2=1,
由x=ρcosθ,y=ρsinθ,x2+y22
又x2+y2x-y=0,即有ρ2=ρ(cosθ+sinθ),
即有圆的极坐标方程是ρ=2cos(θ﹣);
(Ⅱ)由圆的极坐标方程可得,
时,
ρ=2cos()=2×=
故|AB|=
【解析】(Ⅰ)由sin2θ+cos2θ=1,可得圆C的普通方程,再由x=ρcosθ,y=ρsinθ,x2+y22 , 即可得到圆的极坐标方程;
(Ⅱ)由于圆经过原点,由圆的极坐标方程,代入 , 计算即可得到弦长.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最大值和最小值;

(2)设曲线轴正半轴的交点为处的切线方程为,求证:对于任意的正实数,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,P是双曲线 (a>0,b>0,xy≠0)上的动点,F1,F2是双曲线的焦点,M是∠F1PF2的平分线上一点,且.某同学用以下方法研究|OM|:延长F2M交PF1于点N,可知△PNF2为等腰三角形,且M为F2N的中点,得|OM|=|NF1|=…=a。类似地:P是椭圆 (a>b>0,xy≠0)上的动点,F1,F2是椭圆的焦点,M是∠F1PF2的平分线上一点,且,则|OM|的取值范围是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x2﹣4x+3|,x∈R.
(1)在区间[0,4]上画出函数f(x)的图象;

(2)写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+e﹣x , 其中e是自然对数的底数.
(1)证明:f(x)是R上的偶函数;
(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数y=f(x)的最小值为4,且f(0)=f(2)=6,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C:过点(0,4),离心率为
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义域为R,最小正周期为3π的函数,且在区间(﹣π,2π]上的表达式为f(x)= ,则f(﹣ )+f( )=(
A.
B.﹣
C.1
D.﹣1

查看答案和解析>>

同步练习册答案