精英家教网 > 高中数学 > 题目详情
已知椭圆C1
x2
2
+y2=1
和圆C2x2+y2=1,左顶点和下顶点分别为A,B,且F是椭圆C1的右焦点.
(1)若点P是曲线C2上位于第二象限的一点,且△APF的面积为
1
2
+
2
4
,求证:AP⊥OP;
(2)点M和N分别是椭圆C1和圆C2上位于y轴右侧的动点,且直线BN的斜率是直线BM斜率的2倍,求证:直线MN恒过定点.
证明:(1)设曲线C2上的点P(x0,y0),且x0<0,y0>0,由题意A(-
2
,0),F(1,0)
∵△APF的面积为
1
2
+
2
4
,∴
1
2
|AF|y0
=
1
2
(1+
2
)y0=
1
2
+
2
4

y0=
2
2
x0=-
2
2

AP
OP
=(
2
2
2
2
)
(-
2
2
2
2
)
=0
∴AP⊥OP;
(2)设直线BM的斜率为k,则直线BN的斜率为2k,又两直线都过点B(0,-1)
∴直线BM的方程为y=kx-1,直线BN的方程为y=2kx-1
将y=kx-1代入椭圆方程,消元可得(1+2k2)x2-4kx=0,∴xM=
4k
2k2+1
,∴yM=
2k2-1
2k2+1

∴M(
4k
2k2+1
2k2-1
2k2+1

同理N(
4k
4k2+1
4k2-1
4k2+1

∴直线MN的斜率为kMN=
4k2-1
4k2+1
-
2k2-1
2k2+1
4k
4k2+1
-
4k
2k2+1
=-
1
2k

∴直线MN的方程为y-
2k2-1
2k2+1
=-
1
2k
(x-
4k
2k2+1

整理得y=-
1
2k
x+1
∴直线MN恒过定点(0,1)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若直线mx+ny-5=0与圆x2+y2=5没有公共点,则过点P(m,n)的一条直线与椭圆
x2
7
+
y2
5
=1
的公共点的个数是(  )
A.0B.1C.2D.1或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线l:x-y=0与椭圆
x2
2
+y2=1相交A、B两点,点C是椭圆上的动点,则△ABC面积的最大值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,A、B分别是椭圆
y2
a2
+
x2
b2
=1(a>b>0)
的上、下两顶点,P是双曲线
y2
a2
-
x2
b2
=1
上在第一象限内的一点,直线PA、PB分别交椭圆于C、D点,如果D恰是PB的中点.
(1)求证:无论常数a、b如何,直线CD的斜率恒为定值;
(2)求双曲线的离心率,使CD通过椭圆的上焦点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2
5
,且过点(-3,2),⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.
(1)求椭圆的方程;
(2)若直线PA与⊙M的另一交点为Q,当弦PQ最大时,求直线PA的直线方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在椭圆
x2
16
+
y2
9
=1
内,有一内接三角形ABC,它的一边BC与长轴重合,点A在椭圆上运动,则△ABC的重心的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右顶点,若点C(
3
2
3
2
)
在椭圆上,且满足
OC
OA
=
3
2
.(其中O为坐标原点)
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线l与椭圆交于两点M,N,当
OM
+
ON
=m
OC
,m∈(0,2)
时,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线x-y+1=0经过椭圆S:
x2
a2
+
y2
b2
=1(a>b>0)
的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k.
①若直线PA平分线段MN,求k的值;
②对任意k>0,求证:PA⊥PB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,点A,B关于y轴对称.一曲线E过C点,动点P在曲线E上运动,且保持|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)已知点S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若点F(1,
3
2
)
是曲线E上的一点,设M,N是曲线E上不同的两点,直线FM和FN的倾斜角互补,试判断直线MN的斜率是否为定值,如果是,求出这个定值;如果不是,请说明理由.

查看答案和解析>>

同步练习册答案