分析 (1)利用$f(x)=x+\frac{a}{x}$,且f(1)=2,建立方程,求a的值;
(2)利用奇函数的定义判断函数f(x)的奇偶性;
(3)利用单调性的定义,判断与证明即可.
解答 解:(1)∵f(x)=$x+\frac{a}{x}$,且f(1)=2,∴1+a=2,即a=1.
(2)由(1)可知,f(x)=$x+\frac{1}{x}$.
∵函数f(x)的定义域(-∞,0)∪(0,+∞)关于原点对称,
f(-x)=(-x)+$\frac{1}{-x}$=-(x+$\frac{1}{x}$)=-f(x).
∴函数f(x)是奇函数.
(3)任取x1,x2∈(0,+∞),且x1<x2,则x1-x2<0,
∴f(x1)-f(x2)=$({x_1}-{x_2})•\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}=\frac{{({x_1}-{x_2})•({x_1}{x_2}-1)}}{{{x_1}{x_2}}}$.
当x2>x1≥1时,x1x2>1,∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴函数f(x)在[1,+∞)上是增函数.
点评 本题考查函数的奇偶性与单调性,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{a}$,0) | B. | ($\frac{1}{2a}$,0) | ||
| C. | ($\frac{1}{4a}$,0) | D. | a>0 时为($\frac{1}{4a}$,0),a<0 时为(-$\frac{1}{4a}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(2\sqrt{2},+∞)$ | B. | $[2\sqrt{2},+∞)$ | C. | (3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1)(2) | B. | (1) | C. | (2)(3) | D. | (1)(2)(3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1-i | B. | -1+i | C. | 1+i | D. | 1-i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com