| A. | $(2\sqrt{2},+∞)$ | B. | $[2\sqrt{2},+∞)$ | C. | (3,+∞) | D. | [3,+∞) |
分析 画出函数f(x)的图象,则数形结合可知0<a<1,b>1,且ab=1,再将所求a+2b化为关于a的一元函数,利用函数单调性求函数的值域即可.
解答 解:画出y=|lgx|的图象如图:
∵a<b,且f(a)=f(b),![]()
∴|lga|=|lgb|且0<a<1,b>1
∴-lga=lgb
即ab=1
∴y=a+2b=a+$\frac{2}{a}$,a∈(0,1)
∵y=a+$\frac{2}{a}$在(0,1)上为减函数,
∴y>1+$\frac{2}{1}$=3,
∴a+2b的取值范围是(3,+∞),
故选:C.
点评 本题主要考查了对数函数的图象和性质,利用“对勾”函数求函数值域的方法,数形结合的思想方法,转化化归的思想方法,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B=(0,+∞) | B. | (∁RA)∪B=(-∞,0] | C. | (∁RA)∩B={-2,-1} | D. | A∩(∁RB)=[0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分数分组 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150] |
| 文科频数 | 2 | 4 | 8 | 3 | 3 |
| 理科频数 | 3 | 7 | 12 | 20 | 8 |
| 文理 失分 | 文 | 理 |
| 概念 | 15 | 30 |
| 其它 | 5 | 20 |
| P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 16 | C. | 10 | D. | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com