精英家教网 > 高中数学 > 题目详情
17.已知三次函数f(x)=$\frac{a}{3}{x^3}+\frac{b}{2}{x^2}$+cd+d(a<b)的导函数为f′(x),导函数f′(x)的导函数为f″(x),如果对任意的x∈R,不等式f′(x)≥f″(x)恒成立,则$\frac{b^2}{{{a^2}+2{c^2}}}$的最大值为$\sqrt{6}$-2.

分析 由已知可得ax2+(b-2a)x+(c-b)≥0恒成立,即△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,进而利用基本不等式可得最大值.

解答 解:∵f′(x)=ax2+bx+c,
∴f′′(x)=2ax+b,
∵对任意x∈R,不等式f′(x)≥f′′(x)恒成立,
∴ax2+bx+c≥2ax+b恒成立,
即ax2+(b-2a)x+(c-b)≥0恒成立,
故△=(b-2a)2-4a(c-b)=b2+4a2-4ac≤0,且a>0,
即b2≤4ac-4a2,∴4ac-4a2≥0,∴c≥a>0,⇒$\frac{{b}^{2}}{{a}^{2}+2{c}^{2}}≤\frac{4ac-4{a}^{2}}{{a}^{2}+2{c}^{2}}=\frac{4(\frac{c}{a}-1)}{1+2(\frac{c}{a})^{2}}$=$\frac{4(\frac{c}{a}-1)}{2(\frac{c}{a}-1)^{2}+4(\frac{c}{a}-1)+3}$
∴当$\frac{c}{a}-1=0时,即a=c,b=0$,则$\frac{b^2}{{{a^2}+2{c^2}}}$=0,
$\frac{C}{a}-1>0$时,$\frac{b^2}{{{a^2}+2{c^2}}}$≤$\frac{4}{2(\frac{c}{a}-1)+\frac{3}{\frac{c}{a}-1}+4}≤\frac{4}{2\sqrt{\sqrt{6}}+4}$=$\sqrt{6}-2$,
故答案为$\sqrt{6}-2$

点评 本题考查了一元二次不等式恒成立问题,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在无穷等比数列{an}中,a1=$\sqrt{3}$,a2=1,则$\underset{lim}{n→∞}$(a1+a3+a5+…+a2n-1)=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.二次函数y=x2+x-1,则函数的零点个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛物线x=ay2(a≠0)的焦点坐标为(  )
A.($\frac{1}{a}$,0)B.($\frac{1}{2a}$,0)
C.($\frac{1}{4a}$,0)D.a>0 时为($\frac{1}{4a}$,0),a<0 时为(-$\frac{1}{4a}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f (x)的定义域为I,若对?x∈I,都有f(x)<x,则称f(x)为T-函数;
若对?x∈I,都有f[f(x)]<x,则称f(x)为Γ一函数.给出下列命题:
①f (x)=ln(l+x)(x≠0)为τ-函数;
②f (x)=sinx (0<x<π)为Γ一函数;
③f (x)为τ-函数是(x)为Γ一函数的充分不必要条件;
④?a∈R,使得f (x)=ax2-1既是τ一函数又是Γ一函数.
其中真命题有①②④.(把你认为真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,直三棱柱ABC-A1B1C1中,AC⊥AB,AB=2AA1,M是AB的中点,N是BC的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上的一点.
(1)求证:M,N,A1,C1四点共面;
(2)若DE∥平面A1MC1,求$\frac{CE}{EB}$;
(3)求直线BC和平面A1MC1所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}sinωxsin(ωx+\frac{π}{2})-{cos^2}ωx+\frac{1}{2}$(ω>0)的周期为π.
(1)求ω.
(2)若将函数f(x)的图象向左平移$\frac{π}{6}$个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|lgx|.若a<b且f(a)=f(b),则a+2b的取值范围是(  )
A.$(2\sqrt{2},+∞)$B.$[2\sqrt{2},+∞)$C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=log2(ax-bx),且f(1)=1,f(2)=log212;
(1)求a,b的值;   
(2)判断函数f(x)在定义域内的单调性并证明.

查看答案和解析>>

同步练习册答案