精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=log2(ax-bx),且f(1)=1,f(2)=log212;
(1)求a,b的值;   
(2)判断函数f(x)在定义域内的单调性并证明.

分析 (1)根据f(1)=1,f(2)=log212,代入函数的解析式得到关于a,b的方程组,解出即可;
(2)根据函数单调性的对于证明即可.

解答 解:(1)由$\left\{{\begin{array}{l}{f(1)={{log}_2}(a-b)=1}\\{f(2)={{log}_2}({a^2}-{b^2})={{log}_2}12}\end{array}}\right.$,得:$\left\{{\begin{array}{l}{a-b=2}\\{{a^2}-{b^2}=12}\end{array}}\right.$,
解得a=4,b=2;…(4分)
(2)由(1)得$f(x)={log_2}({4^x}-{2^x})$…(5分)
由4x-2x>0,得2x-1>0,解得:x>0…(6分)
∴f(x)的定义域为(0,+∞)…(7分)
设x1>x2>0,
则${4^{x_1}}-{2^{x_1}}-({4^{x_2}}-{2^{x_2}})=({4^{x_1}}-{4^{x_1}})-({2^{x_1}}-{2^{x_2}})$
=$({2^{x_1}}-{2^{x_2}})({2^{x_1}}+{2^{x_2}}-1)$…(9分)
∵x1>x2>0,∴${2^{x_1}}>{2^{x_2}}>1$,
∴$({2^{x_1}}-{2^{x_2}})({2^{x_1}}+{2^{x_2}}-1)>0$,
∴${4^{x_1}}-{2^{x_1}}>{4^{x_2}}-{2^{x_2}}$…(10分)
又y=log2x在(0,+∞)上递增;
∴${log_2}({4^{x_1}}-{2^{x_1}})>{log_2}({4^{x_2}}-{2^{x_2}})$,
即f(x1)>f(x2)…(11分)
∴f(x)在定义域(0,+∞)内递增…(12分)

点评 本题考查了对数函数的性质,考查根据定义证明函数的单调性问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知三次函数f(x)=$\frac{a}{3}{x^3}+\frac{b}{2}{x^2}$+cd+d(a<b)的导函数为f′(x),导函数f′(x)的导函数为f″(x),如果对任意的x∈R,不等式f′(x)≥f″(x)恒成立,则$\frac{b^2}{{{a^2}+2{c^2}}}$的最大值为$\sqrt{6}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校有1400名考生参加市模拟考试,现采取分层抽样的方法从文、理考生中分别抽取20份和50份数学试卷,进行成绩分析,得到下面的成绩频数分布表:
分数分组[0,30)[30,60)[60,90)[90,120)[120,150]
文科频数24833
理科频数3712208
(1)估计文科数学平均分及理科考生的及格人数(90分为及格分数线);
(2)在试卷分析中,发现概念性失分非常严重,统计结果如下:
文理
失分
概念1530
其它520
问是否有90%的把握认为概念失分与文、理考生的不同有关?(本题可以参考独立性检验临界值表:)
P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)探求f(x)在区间[1,+∞)的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的两焦点与短轴的一个端点的连线构成等边三角形,直线$x+y+2\sqrt{2}-1=0$与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称.设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4
(ⅰ)求k1k2的值;
(ⅱ)求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.总体编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为01.
  7816   6572   0802   6314   0214   4319   9714   0198
  3204   9234   4936   8200   3623   4869   6938   7181

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1+a2+a3+…+an=n-an.其中n∈N*
(1)求数列{an}的通项公式;
(2)求数列{(2-n)(an-1)}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设集合A={x|x∈Z,-10≤x≤-1},B={x|x∈Z,x2≤25},则A∪B中的元素个数是(  )
A.15B.16C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an}是正数组成的数列,a1=1,且点($\sqrt{{a}_{n}}$,an+1)(n∈N*)在函数y=x2+1的图象上.
(1)求数列{an}的通项公式;
(2)令{bn}满足bn=an•xn(x≠0且x≠1),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案