【题目】已知
,命题
对任意
,不等式
恒成立,命题
存在
,使不等式
成立.
(1)若
为真命题,求
的取值范围;
(2)若
为假,
为真,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,
,且
,
,
.
![]()
(1)求证:
;
(2)在线段
上,是否存在一点
,使得二面角
的大小为45°,如果存在,求
与平面
所成角的正弦值,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
(
)与椭圆
:
相交所得的弦长为![]()
(Ⅰ)求抛物线
的标准方程;
(Ⅱ)设
,
是
上异于原点
的两个不同点,直线
和
的倾斜角分别为
和
,当
,
变化且
为定值
(
)时,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
的最小正期为
.
(1)求
的单调增区间;
(2)方程
在
上有且只有一个解,求实数
的取值范围;
(3)是否存在实数
满足对任意
,都存在
,使得
成立.若存在,求
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)选修4—4,坐标系与参数方程
已知曲线
,直线
:
(
为参数).
(I)写出曲线
的参数方程,直线
的普通方程;
(II)过曲线
上任意一点
作与
夹角为
的直线,交
于点
,
的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
,g(x)=xlnx.
(Ⅰ)若函数g(x)的图象在(1,0)处的切线l与函数f(x)的图象相切,求实数k的值;
(Ⅱ)当k=0时,证明:f(x)+g(x)>0;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com