精英家教网 > 高中数学 > 题目详情
18.过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是$\frac{12}{5}$.

分析 根据题意,设P的坐标为(m,n),圆(x-3)2+(y-4)2=1的圆心为N,由圆的切线的性质可得|PN|2=|PQ|2+|NQ|2=|PQ|2+1,结合题意可得|PN|2=|PO|2+1,代入点的坐标可得(m-3)2+(n-4)2=m2+n2+1,变形可得:6m+8n=24,可得P的轨迹,分析可得|PQ|的最小值即点O到直线6x+8y=24的距离,由点到直线的距离公式计算可得答案.

解答 解:根据题意,设P的坐标为(m,n),圆(x-3)2+(y-4)2=1的圆心为N,则N(3,4)
PQ为圆(x-3)2+(y-4)2=1的切线,则有|PN|2=|PQ|2+|NQ|2=|PQ|2+1,
又由|PQ|=|PO|,
则有|PN|2=|PO|2+1,
即(m-3)2+(n-4)2=m2+n2+1,
变形可得:6m+8n=24,
即P在直线6x+8y=24上,
则|PQ|的最小值即点O到直线6x+8y=24的距离,
且d=$\frac{|6×0+8×0-24|}{\sqrt{{6}^{2}+{8}^{2}}}$=$\frac{12}{5}$;
即|PQ|的最小值是$\frac{12}{5}$;
故答案为:$\frac{12}{5}$.

点评 本题考查直线与圆的位置关系,涉及圆的切线的性质、勾股定理、两点之间的距离公式,关键是求出点P的轨迹.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在等差数列{an}中,已知a4=4,a8=-4,则a12=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow m=(1,2)$,$\overrightarrow n=(2,3)$,则$\overrightarrow m$在$\overrightarrow n$方向上的投影为(  )
A.$\sqrt{13}$B.8C.$\frac{{8\sqrt{5}}}{5}$D.$\frac{{8\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=$\frac{π}{3}$,AB=CC1=2.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)若点E在棱CC1上(不包含端点C,C1),且EA⊥EB1,求直线AE和平面ABC1所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数a,b满足(a+i)(1-i)=3+bi(i为虚数单位),记z=a+bi,则|z|是(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.5D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记为0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下所示.
等级不合格合格
得分[20,40)[40,60)[60,80)[80,100]
频数6a24b
(Ⅰ)求a,b,c的值;
(Ⅱ)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中选取5人进行座谈.现再从这5人中任选2人,求这两人都合格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|2x-3|-|x+1|.
(1)若不等式f(x)≤a的解集是空集,求实数a的取值范围;
(2)若存在x0∈R,使得2f(x0)≤-t2+4|t|成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{2x}{x+1}$
(1)用定义证明:f(x)在[0,1]上是增函数
(2)若2<x<6时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C经过(2,4)、(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l交圆相交于M、N两点.
(Ⅰ)求圆C的方程;
(Ⅱ)(i)请问$\overrightarrow{AM}•\overrightarrow{AN}$是否为定值.若是,请求出该定值,若不是,请说明理由;
(ii)若O为坐标原点,且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直线l的方程.

查看答案和解析>>

同步练习册答案