精英家教网 > 高中数学 > 题目详情
4.已知圆C经过(2,4)、(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l交圆相交于M、N两点.
(Ⅰ)求圆C的方程;
(Ⅱ)(i)请问$\overrightarrow{AM}•\overrightarrow{AN}$是否为定值.若是,请求出该定值,若不是,请说明理由;
(ii)若O为坐标原点,且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直线l的方程.

分析 (Ⅰ)设圆C的方程为(x-a)2+(y-b)2=r2,由已知列关于a,b,r的方程组求解方程组可得a,b,r的值,则圆C的方程可求;
(Ⅱ)(i)直接利用切割线定理求得$\overrightarrow{AM}•\overrightarrow{AN}$的值;
(ii)依题意可知,直线l的方程为y=kx+1,设M(x1,y1),N(x2,y2),把y=kx+1代入(x-2)2+(y-3)2=1并整理,利用根与系数的关系求出A,B的横坐标的和与积,代入$\overrightarrow{OM}•\overrightarrow{ON}=12$求得k值,从而求得直线l的方程.

解答 解:(Ⅰ)设圆C的方程为(x-a)2+(y-b)2=r2
则依题意,得$\left\{\begin{array}{l}{(2-a)^2}+{(4-b)^2}={r^2}\\{(1-a)^2}+{(3-b)^2}={r^2}\\ a-b+1=0\end{array}\right.$,解得$\left\{\begin{array}{l}a=2\\ b=3\\ r=1\end{array}\right.$.
∴圆C的方程为(x-2)2+(y-3)2=1;
(Ⅱ)(i)$\overrightarrow{AM}•\overrightarrow{AN}$为定值.
过点A(0,1)作直线AT与圆C相切,切点为T,则AT2=7,
∴$\overrightarrow{AM}•\overrightarrow{AN}=|\overrightarrow{AM}|•|\overrightarrow{AN}|cos0°=A{T^2}=7$,∴$\overrightarrow{AM}•\overrightarrow{AN}$为定值,且定值为7;
(ii)依题意可知,直线l的方程为y=kx+1,
设M(x1,y1),N(x2,y2),
将y=kx+1代入(x-2)2+(y-3)2=1并整理得:(1+k2)x2-4(1+k)x+7=0,
∴${x_1}+{x_2}=\frac{{4(1+{k^2})}}{{1+{k^2}}}$,${x_1}+{x_2}=\frac{7}{{1+{k^2}}}$,
∴$\overrightarrow{OM}•\overrightarrow{ON}$=x1x2+y1y2=$(1+{k^2}){x_1}{x_2}+k({x_1}+{x_2})+1=\frac{4k(1+k)}{{1+{k^2}}}+8=12$,
即$\frac{4k(1+k)}{{1+{k^2}}}=4$,解得k=1,
又当k=1时△>0,∴k=1,
∴直线l的方程为y=x+1.

点评 本题考查利用待定系数法求圆的方程,考查直线与圆位置关系的应用,体现了“设而不求”的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某四棱锥的三视图如图所示(单位:cm),则该几何体的体积是12cm3,侧面积是27cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆O1:x2+2x+y2=0,圆O2:x2-2x+y2-8=0,动圆P与圆O1外切且和圆O2内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,$\frac{1}{2}$)作直线l交曲线C于A、B两点,且点M恰好为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,则原平面图形的周长为(  )
A.4+$\sqrt{2}$+$\sqrt{6}$B.3+$\sqrt{2}$+$\sqrt{3}$C.2+$\sqrt{2}$D.3+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号12345678
数学偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x,
参考数据:$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.20世纪70年代,流行一种游戏---角谷猜想,规则如下:任意写出一个自然数n,按照以下的规律进行变换:如果n是个奇数,则下一步变成3n+1;如果n是个偶数,则下一步变成$\frac{n}{2}$,这种游戏的魅力在于无论你写出一个多么庞大的数字,最后必然会落在谷底,更准确的说是落入底部的4-2-1循环,而永远也跳不出这个圈子,下列程序框图就是根据这个游戏而设计的,如果输出的i值为6,则输入的n值为(  )
A.5B.16C.5或32D.4或5或32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,D为线段BC的中点,AB=2AC=2,tan∠CAD=sin∠BAC,则BC=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则输出S的值为(  )
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{6}{7}$D.$\frac{7}{8}$

查看答案和解析>>

同步练习册答案