精英家教网 > 高中数学 > 题目详情
12.已知圆O1:x2+2x+y2=0,圆O2:x2-2x+y2-8=0,动圆P与圆O1外切且和圆O2内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,$\frac{1}{2}$)作直线l交曲线C于A、B两点,且点M恰好为弦AB的中点,求直线l的方程.

分析 (1)由圆的位置关系可知|PO1|+|PO2|=4,故而曲线C为以O1,O2为焦点的椭圆,根据椭圆的定义得出曲线C的方程;
(2)联立方程组,根据根与系数的关系列方程求出斜率k即可得出直线l的方程.

解答 解:(1)圆O1的圆心为O1(-1,0),半径r1=1,
圆O2的圆心为O2(1,0),半径为r2=3,
∵动圆P与圆O1外切且和圆O2内切,
∴动圆P的半径r=|PO1|-r1=r2-|PO2|,
即|PO1|+|PO2|=4,
∴P点轨迹是以O1,O2为焦点的椭圆,
∴P点轨迹曲线C的方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.
(2)设直线l斜率为k,则直线l的方程为:y=k(x-1)+$\frac{1}{2}$,
联立方程组$\left\{\begin{array}{l}{y=k(x-1)+\frac{1}{2}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消元得:(3+4k2)x2+4k(1-2k)x+(2k-1)2-12=0,
设A(x1,y1),B(x2,y2),则x1+x2=$\frac{4k(2k-1)}{3+4{k}^{2}}$=2,
解得k=-$\frac{3}{2}$.
∴直线l的方程为y=-$\frac{3}{2}$(x-1)+$\frac{1}{2}$,即3x+2y-4=0.

点评 本题考查了圆的位置关系,椭圆的定义,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在三棱拄ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=$\frac{π}{3}$,AB=CC1=2.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)若点E在棱CC1上(不包含端点C,C1),且EA⊥EB1,求直线AE和平面ABC1所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{2x}{x+1}$
(1)用定义证明:f(x)在[0,1]上是增函数
(2)若2<x<6时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a、\overrightarrow b、\overrightarrow c$是空间的一个单位正交基底,向量$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$是空间的另一组基底,若向量$\overrightarrow p$在基底$\overrightarrow a、\overrightarrow b、\overrightarrow c$下的坐标是(1,3,4),求向量$\overrightarrow p$在基底$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$下的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积等于(  )
A.12πcm2B.15πcm2C.24πcm2D.30πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若|x-s|<t,|y-s|<t,则下列不等式中一定成立的是(  )
A.|x-y|<2tB.|x-y|<tC.|x-y|>2tD.|x-y|>t

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C经过(2,4)、(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l交圆相交于M、N两点.
(Ⅰ)求圆C的方程;
(Ⅱ)(i)请问$\overrightarrow{AM}•\overrightarrow{AN}$是否为定值.若是,请求出该定值,若不是,请说明理由;
(ii)若O为坐标原点,且$\overrightarrow{OM}•\overrightarrow{ON}=12$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点分别是F1,F2,点P在双曲线上,且满足∠PF2F1=2∠PF1F2=60°,则此双曲线的离心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一个三棱锥的三视图如图所示,则该三棱锥的体积(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

同步练习册答案