精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a、\overrightarrow b、\overrightarrow c$是空间的一个单位正交基底,向量$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$是空间的另一组基底,若向量$\overrightarrow p$在基底$\overrightarrow a、\overrightarrow b、\overrightarrow c$下的坐标是(1,3,4),求向量$\overrightarrow p$在基底$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$下的坐标.

分析 不妨设:$\overrightarrow{a}$=(1,0,0),$\overrightarrow{b}$=(0,1,0),$\overrightarrow{c}$=(0,0,1).可得$\overrightarrow{p}$=$\overrightarrow{a}+3\overrightarrow{b}$+4$\overrightarrow{c}$.设$\overrightarrow{p}$=x$(\overrightarrow{a}+\overrightarrow{b})$+y$(\overrightarrow{a}-\overrightarrow{b})$+z$\overrightarrow{c}$=$(x+y)\overrightarrow{a}$+(x-y)$\overrightarrow{b}$+z$\overrightarrow{c}$.利用空间向量基本定理即可得出.

解答 解:不妨设:$\overrightarrow{a}$=(1,0,0),$\overrightarrow{b}$=(0,1,0),$\overrightarrow{c}$=(0,0,1).
$\overrightarrow{p}$=$\overrightarrow{a}+3\overrightarrow{b}$+4$\overrightarrow{c}$.
设$\overrightarrow{p}$=x$(\overrightarrow{a}+\overrightarrow{b})$+y$(\overrightarrow{a}-\overrightarrow{b})$+z$\overrightarrow{c}$=$(x+y)\overrightarrow{a}$+(x-y)$\overrightarrow{b}$+z$\overrightarrow{c}$.
∴$\left\{\begin{array}{l}{x+y=1}\\{x-y=3}\\{z=4}\end{array}\right.$,解得x=2,y=-1,z=4.
∴向量$\overrightarrow p$在基底$\overrightarrow a+\overrightarrow b、\overrightarrow a-\overrightarrow b、\overrightarrow c$下的坐标为(2,-1,4).

点评 本题考查了空间向量基本定理、向量坐标运算性质、方程组的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,公差d≠0,a1=1,且a1,a2,a5成等比数列.
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{a_n}{3^n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax+lnx,g(x)=x2-2x+2.若对任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),则实数a的取值范围是(-∞,-$\frac{1}{{e}^{3}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{a}$=(2,3,-1),$\overrightarrow{b}$=(-2,1,3),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某四棱锥的三视图如图所示(单位:cm),则该几何体的体积是12cm3,侧面积是27cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆C与圆D:(x-1)2+(y+2)2=4关于直线y=x对称.
(Ⅰ) 求圆C的标准方程;
(Ⅱ)若直线l:y=kx+1与圆C交于A、B两点,且$|{AB}|=2\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆O1:x2+2x+y2=0,圆O2:x2-2x+y2-8=0,动圆P与圆O1外切且和圆O2内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)过点(1,$\frac{1}{2}$)作直线l交曲线C于A、B两点,且点M恰好为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:
学生序号12345678
数学偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$x,
参考数据:$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知公比为2的等比数列{an},若a2+a3=2,则a4+a5=(  )
A.$\frac{1}{2}$B.1C.4D.8

查看答案和解析>>

同步练习册答案