精英家教网 > 高中数学 > 题目详情
18.已知f(x)是定义域为R的奇函数,当x<0时,f(x)=x2-x,那么当x>0时f(x)的解析式是(  )
A.f(x)=-x2-xB.f(x)=x2+xC.f(x)=x2-xD.f(x)=-x2+x

分析 利用f(x)是定义域为R的奇函数,f(-x)=-f(x),当x<0时,f(x)=x2-x,可求x>0时f(x)的解析式

解答 解:由题意:f(x)是定义域为R的奇函数,f(-x)=-f(x),
当x<0时,f(x)=x2-x,
那么:当x>0时,则-x<0,故得f(-x)=x2+x,
∵f(-x)=-f(x),
∴f(-x)=x2+x=-f(x),
故得f(x)=-x2-x.
故选A.

点评 本题考查了函数解析式的求法,利用了函数是奇函数这性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.抛物线x2=4y的焦点为F,准线为l,经过F且倾斜角为$\frac{π}{6}$的直线与抛物线在y轴右侧的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是(  )
A.4B.$4\sqrt{3}$C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,角A,B,C的对边分别是a,b,c,若$\frac{c}{sinB}$+$\frac{b}{sinC}$=2a,b=$\sqrt{2}$,则△ABC面积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x},x≤0}\\{f(x-1),x>0}\end{array}\right.$,则方程f(x)=x+2实根的个数是(  )
A.2B.3C.4D.4个以上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=a$\sqrt{1-{x}^{2}}$+$\sqrt{1+x}$+$\sqrt{1-x}$(a∈R).
(Ⅰ)设t=$\sqrt{1+x}$+$\sqrt{1-x}$,求t的取值范围,并把f(x)表示为t的函数φ(t);
(Ⅱ)记f(x)的最大值为g(a),求g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.有以下四个命题:
①函数y=sin2x+$\frac{3}{si{n}^{2}x}$的最小值是2$\sqrt{3}$;
②已知f(x)=$\frac{x-\sqrt{11}}{x-\sqrt{10}}$,则f(4)<f(3);
③定义在R上的奇函数f(x)满足f(x+1)=-f(x),则f(2016)=0;
④y=loga(2+ax)(a>0,a≠1)在R上是增函数.
其中真命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在矩形ABCO中,阴影部分的面积为2.

查看答案和解析>>

同步练习册答案