精英家教网 > 高中数学 > 题目详情
6.如图,在矩形ABCO中,阴影部分的面积为2.

分析 由题意,S=2${∫}_{0}^{\frac{π}{2}}(2co{s}^{2}\frac{x}{2}-1)$dx,即可得出结论.

解答 解:由题意,S=2${∫}_{0}^{\frac{π}{2}}(2co{s}^{2}\frac{x}{2}-1)$dx=2$sinx{|}_{0}^{\frac{π}{2}}$=2,
故答案为2.

点评 本题考查利用定积分求面积,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知f(x)是定义域为R的奇函数,当x<0时,f(x)=x2-x,那么当x>0时f(x)的解析式是(  )
A.f(x)=-x2-xB.f(x)=x2+xC.f(x)=x2-xD.f(x)=-x2+x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设E,F分别为平行四边形ABCD中AB,AD的中点,$\overrightarrow{EC}$+$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AC}$C.$\frac{3}{2}$$\overrightarrow{AC}$D.2$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{2x+1}$+$\sqrt{3-4x}$的定义域为(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[{-\frac{1}{2},\frac{3}{4}}]$C.$(-∞,\frac{1}{2}]$D.$(-\frac{1}{2},0)∪(0,+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a2+c2=b2+$\sqrt{2}$ac.
(1)求∠B 的大小;
(2)求cosA+$\sqrt{2}$cosC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范围;
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的内角A,B满足cosAcosB>sinAsinB,则△ABC是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,有两条相交成60°角的直线xx′,yy′,交点是O,甲、乙分别在Ox,Oy上,起初甲离O点3km,乙离O点1km,后来两人同时用每小时4km的速度,甲沿xx′方向,乙沿y′y方向步行,问:
(1)用包含t的式子表示t小时后两人的距离;?
(2)什么时候两人的距离最短?

查看答案和解析>>

同步练习册答案