精英家教网 > 高中数学 > 题目详情
16.如图,有两条相交成60°角的直线xx′,yy′,交点是O,甲、乙分别在Ox,Oy上,起初甲离O点3km,乙离O点1km,后来两人同时用每小时4km的速度,甲沿xx′方向,乙沿y′y方向步行,问:
(1)用包含t的式子表示t小时后两人的距离;?
(2)什么时候两人的距离最短?

分析 (1)设甲、乙两人t小时后的位置分别是P、Q,分情况讨论:当0<t≤$\frac{3}{4}$或t>$\frac{3}{4}$时,由余弦定理即可分别求PQ的值;
(2)由(1)可得PQ2=48(t-$\frac{1}{4}$)2+4,利用二次函数的性质即可求得t=$\frac{1}{4}$时两人的距离最短,最短距离为2km.

解答 解:(1)设甲、乙两人t小时后的位置分别是P、Q,
则AP=4t,BQ=4t,
(Ⅰ)当0≤t≤$\frac{3}{4}$时,
PQ=$\sqrt{(3-4t)^{2}+(1+4t)^{2}-2(3-4t)(1+4t)cos60°}$=$\sqrt{48{t}^{2}-24t+7}$.
(Ⅱ)当t>$\frac{3}{4}$时,
PQ=$\sqrt{(4t-3)^{2}+(1+4t)^{2}-2(4t-3)(1+4t)cos120°}$=$\sqrt{48{t}^{2}-24t+7}$,
综上(Ⅰ)、(Ⅱ)可知PQ═$\sqrt{48{t}^{2}-24t+7}$.
(2)∵PQ2=48(t-$\frac{1}{4}$)2+4,
∴当t=$\frac{1}{4}$时,(PQ)min=2,
即在第15分钟末,PQ最短,最短距离为2 km.

点评 本题主要考查了余弦定理在解三角形中的应用,正确分析实际问题中的边角关系是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,在矩形ABCO中,阴影部分的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确的是(  )
A.θ=$\frac{π}{4}$是f(x)=sin(x-2θ)的图象关于y轴对称的充分不必要条件
B.|a|-|b|=|a-b|的充要条件是a与b的方向相同
C.b=$\sqrt{ac}$是a,b,c三数成等比数列的充分不必要条件
D.m=3是直线(m+3)x+my-2=0与mx-6y+5=0互相垂直的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设数列{an}的通项公式${a_n}=ncos\frac{nπ}{2}$,前n项和为Sn,则S2012=1006.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆N经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.
(Ⅰ)求圆N的方程;
(Ⅱ)求圆N关于直线x-y+3=0对称的圆的方程.
(Ⅲ)若点D为圆N上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若数列{an}中,a1=3,an+1=an+3,则an=(  )
A.3B.3n+3C.3nD.3n+6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为(  )
A.(-2,-1)B.(-1,0)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知 函数f(x)=x3+(m-4)x2-3mx+(n-6)x∈R的图象关于原点对称,其中m,n为实常数.
(1)求m,n的值;
(2)试用单调性的定义证明:f(x)在区间[-2,2]上是单调函数;
(3)当-2≤x≤2 时,不等式f(x)≥(n-logma)logma恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为30°和45°,则$\frac{AE}{EC′}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步练习册答案