分析 (1)利用函数的对称性,得到方程,转化求解m,n即可.
(2)利用函数的单调性的定义直接证明即可.
(3)利用函数的单调性结合函数的定义域,转化求解即可.
解答 (本题14分)
解:(1)由已知得f(x)为奇函数∴f(-x)=-f(x)即-x3+(m-4)x2+3mx+(n-6)=-x3-(m-4)x2+3mx-(n-6)恒成立,即(m-4)x2+(n-6)=0恒成立,∴m=4,n=6…(4分)
(2)由(1)的f(x)=x3-12x,设-2≤x1<x2≤2,$f({x_1})-f({x_2})=x_1^3-12{x_1}-x_2^3+12x{\;}_2=({x_1}-{x_2})(x_1^2+{x_1}{x_2}+x_2^2-12)$,
∵-2≤x1<x2≤2,∴${x_1}-{x_2}<0,x_1^2+{x_1}{x_2}+x_2^2-12<0$,
∴f(x1)-f(x2)>0,
即∴f(x1)>f(x2),
∴f(x)在[-2,2]上是减函数 …(10分)
(3)由(2)知f(x)在[-2,2]上是减函数,
则f(x)≥f(2)=-16-16≥(6-log4a)log4a,
∴(log4a-8)(log4a+2)≥0,
∴log4a≤-2或log4a≥8,
∴$0<a≤\frac{1}{16}$或a≥48…(14分)
点评 本题考查函数的恒成立条件的应用,函数的单调性,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(1)<f(2)<f(4) | B. | f(2)<f(1)<f(4) | C. | f(2)<f(4)<f(1) | D. | f(4)<f(2)<f(1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com