精英家教网 > 高中数学 > 题目详情
17.已知正项等比数列{an}的前n项积为πn,已知am-1•am+1=2am,π2m-1=2048,则m=6.

分析 由am-1am+1-2am=0,结合等比数列的性质可得am=2,从而可表示T2m-1,由此可求m的值.

解答 解:∵am-1am+1=2am,∴由等比数列的性质可得,am2-2am=0,
∵am>0,∴am=2,
∵π2m-1=a1a2…a2m-1=(a1a2m-1)•(a2a2m-2)…am=am2m-2am=am2m-1=22m-1=2048,
∴2m-1=11,∴m=6.
故答案为:6.

点评 本题考查了等比数列的性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.下列命题中,正确的是(  )
A.θ=$\frac{π}{4}$是f(x)=sin(x-2θ)的图象关于y轴对称的充分不必要条件
B.|a|-|b|=|a-b|的充要条件是a与b的方向相同
C.b=$\sqrt{ac}$是a,b,c三数成等比数列的充分不必要条件
D.m=3是直线(m+3)x+my-2=0与mx-6y+5=0互相垂直的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为(  )
A.(-2,-1)B.(-1,0)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知 函数f(x)=x3+(m-4)x2-3mx+(n-6)x∈R的图象关于原点对称,其中m,n为实常数.
(1)求m,n的值;
(2)试用单调性的定义证明:f(x)在区间[-2,2]上是单调函数;
(3)当-2≤x≤2 时,不等式f(x)≥(n-logma)logma恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,矩形ABCD中,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,下列说法正确的是①②.(填序号)
①MB∥平面A1DE;
②|BM|是定值;
③A1C⊥DE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求值:
(1)${({0.064})^{-\frac{1}{3}}}-{({-\frac{5}{9}})^0}+{[{{{({-2})}^3}}]^{-\frac{4}{3}}}+{16^{-0.75}}$;
(2)设3x=4y=36,求$\frac{2}{x}+\frac{1}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.中国乒乓球队备战里约奥运会热身赛暨选拨赛于2016年7月14日在山东威海开赛,种子选手A与非种子选手B1,B2,B3分别进行一场对抗赛,按以往多次比赛的统计,A获胜的概率分别为$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,且各场比赛互不影响.
(Ⅰ)若A至少获胜两场的概率大于$\frac{2}{3}$,则A入选征战里约奥运会的最终名单,否则不予入选,问A是否会入选最终的名单?
(Ⅱ)求A获胜场数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,将菱形ABCD沿对角线BD折起,使得C点至C′,E点在线段AC′上,若二面角A-BD-E与二面角E-BD-C′的大小分别为30°和45°,则$\frac{AE}{EC′}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若集合{1,2,3}={a,b,c},则a+b+c=6.

查看答案和解析>>

同步练习册答案