精英家教网 > 高中数学 > 题目详情
8.在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为(  )
A.(-2,-1)B.(-1,0)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},1)$

分析 根据导函数判断函数f(x)=ex+4x-3单调递增,运用零点判定定理,判定区间.

解答 解:∵函数f(x)=ex+4x-3
∴f′(x)=ex+4
当x>0时,f′(x)=ex+4>0
∴函数f(x)=ex+4x-3在(-∞,+∞)上为f(0)=e0-3=-2<0,
f($\frac{1}{2}$)=$\sqrt{e}$+2-3=$\sqrt{e}$-1=${e}^{\frac{1}{2}}$-e0>0,
∴f(0)•f($\frac{1}{2}$)<0,
∴函数f(x)=ex+4x-3的零点所在的区间为(0,$\frac{1}{2}$)
故选:C.

点评 本题考察了函数零点的判断方法,借助导数,函数值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若平面区域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=ax,x∈[-1,2]的最大值与函数f(x)=x2-2x+3的最值相等,则a的值为(  )
A.$\sqrt{2}$B.$\sqrt{2}$或2C.$\frac{1}{2}$或2D.$\frac{1}{2}或\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,有两条相交成60°角的直线xx′,yy′,交点是O,甲、乙分别在Ox,Oy上,起初甲离O点3km,乙离O点1km,后来两人同时用每小时4km的速度,甲沿xx′方向,乙沿y′y方向步行,问:
(1)用包含t的式子表示t小时后两人的距离;?
(2)什么时候两人的距离最短?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知x>0,y>0,2x+y=2,则xy的最大值为(  )
A.$\frac{1}{2}$B.1C.$\frac{\sqrt{2}}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$f(x)=\frac{{{{log}_2}(3-x)}}{{\sqrt{81-{x^2}}}}$的定义域为(-9,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=$\left\{\begin{array}{l}{x-4,(x≥6)}\\{f(x+2),(x<6)}\end{array}\right.$,则f(3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正项等比数列{an}的前n项积为πn,已知am-1•am+1=2am,π2m-1=2048,则m=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{1}{2}{x^2}-2alnx+(a-2)x$.
(1)当a=1时,求函数f(x)在[1,e]上的最小值和最大值;
(2)当a≤0时,讨论函数f(x)的单调性;
(3)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}>a$恒成立,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案