9£®ÖйúƹÅÒÇò¶Ó±¸Õ½ÀïÔ¼°ÂÔË»áÈÈÉíÈüôßÑ¡²¦ÈüÓÚ2016Äê7ÔÂ14ÈÕÔÚɽ¶«Íþº£¿ªÈü£¬ÖÖ×ÓÑ¡ÊÖAÓë·ÇÖÖ×ÓÑ¡ÊÖB1£¬B2£¬B3·Ö±ð½øÐÐÒ»³¡¶Ô¿¹Èü£¬°´ÒÔÍù¶à´Î±ÈÈüµÄͳ¼Æ£¬A»ñʤµÄ¸ÅÂÊ·Ö±ðΪ$\frac{3}{4}£¬\frac{2}{3}£¬\frac{1}{2}$£¬ÇÒ¸÷³¡±ÈÈü»¥²»Ó°Ï죮
£¨¢ñ£©ÈôAÖÁÉÙ»ñʤÁ½³¡µÄ¸ÅÂÊ´óÓÚ$\frac{2}{3}$£¬ÔòAÈëÑ¡Õ÷Õ½ÀïÔ¼°ÂÔË»áµÄ×îÖÕÃûµ¥£¬·ñÔò²»ÓèÈëÑ¡£¬ÎÊAÊÇ·ñ»áÈëÑ¡×îÖÕµÄÃûµ¥£¿
£¨¢ò£©ÇóA»ñʤ³¡ÊýXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ÀûÓÃÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½£¬½áºÏÌõ¼þ£¬¼´¿ÉÇó½â£»
£¨¢ò£©¾ÝÌâÒ⣬XµÄ¿ÉÄÜֵΪ0¡¢1¡¢2¡¢3£¬Çó³ö¸ÅÂÊ£¬Áгö·Ö²¼ÁУ¬È»ºóÇó½âÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©¼Ç¡°ÖÖ×ÓAÓë·ÇÖÖ×ÓB1¡¢B2¡¢B3±ÈÈü»ñʤ¡±·Ö±ðΪʼþA1¡¢A2¡¢A3$A={A_1}{A_2}{A_3}+\overline{A_1}{A_2}{A_3}+{A_1}\overline{A_2}{A_3}+{A_1}{A_2}\overline{A_3}$$P£¨A£©=P£¨{A_1}{A_2}{A_3}+\overline{A_1}{A_2}{A_3}+{A_1}\overline{A_2}{A_3}+{A_1}{A_2}\overline{A_3}£©$=$\frac{17}{24}£¾\frac{2}{3}$
ËùÒÔ£¬AÈëÑ¡×îÖÕÃûµ¥¡­.6
£¨¢ò£©XµÄ¿ÉÄÜֵΪ0¡¢1¡¢2¡¢3
$\begin{array}{l}P£¨x=0£©=\frac{1}{4}•\frac{1}{3}•\frac{1}{2}=\frac{1}{24}\\ P£¨x=1£©=\frac{3}{4}•\frac{1}{3}•\frac{1}{2}+\frac{1}{4}•\frac{2}{3}•\frac{1}{2}+\frac{1}{4}•\frac{1}{3}•\frac{1}{2}=\frac{6}{24}\\ P£¨x=2£©=\frac{3}{4}•\frac{2}{3}•\frac{1}{2}+\frac{3}{4}•\frac{1}{3}•\frac{1}{2}+\frac{1}{4}•\frac{2}{3}•\frac{1}{2}=\frac{11}{24}\\ P£¨x=3£©=\frac{3}{4}•\frac{2}{3}•\frac{1}{2}=\frac{6}{24}\end{array}$
ËùÒÔ£¬XµÄ·Ö²¼ÁÐΪ

X0123
P$\frac{1}{24}$$\frac{6}{24}$$\frac{11}{24}$$\frac{6}{24}$
ËùÒÔ£¬ÊýѧÆÚÍû£º$E£¨X£©=0¡Á\frac{1}{24}+1¡Á\frac{6}{24}+2¡Á\frac{11}{24}+3¡Á\frac{6}{24}=\frac{23}{13}$¡­..12

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®º¯Êýy=ax£¬x¡Ê[-1£¬2]µÄ×î´óÖµÓ뺯Êýf£¨x£©=x2-2x+3µÄ×îÖµÏàµÈ£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{2}$»ò2C£®$\frac{1}{2}$»ò2D£®$\frac{1}{2}»ò\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{x-4£¬£¨x¡Ý6£©}\\{f£¨x+2£©£¬£¨x£¼6£©}\end{array}\right.$£¬Ôòf£¨3£©=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{an}µÄǰnÏî»ýΪ¦Ðn£¬ÒÑÖªam-1•am+1=2am£¬¦Ð2m-1=2048£¬Ôòm=6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¸´Êý$z=\frac{2}{1+i}$µÄÐ鲿£¨¡¡¡¡£©
A£®iB£®-iC£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Îª¹á³¹Âäʵ½ÌÓý²¿µÈ6²¿ÃÅ¡¶¹ØÓÚ¼Ó¿ì·¢Õ¹ÇàÉÙÄêУ԰×ãÇòµÄʵʩÒâ¼û¡·£¬È«ÃæÌá¸ßÎÒÊÐÖÐѧÉúµÄÌåÖʽ¡¿µË®Æ½£¬ÆÕ¼°×ãÇò֪ʶºÍ¼¼ÄÜ£¬ÊнÌÌå¾Ö¾ö¶¨¾ÙÐÐÇ^У԰×ãÇòÁªÈü£¬ÎªÓ­½Ó´Ë´ÎÁªÈü£¬¼×ÖÐѧѡ°ÎÁË20ÃûѧÉú×é³É¼¯Ñµ¶Ó£¬ÏÖͳ¼ÆÁËÕâ20ÃûѧÉúµÄÉí¸ß£¬µÃµ½¾¥Ò¶Í¼ÈçÏ£º
Õâ20ÃûѧÉúµÄÉí¸ßÖÐλÊý¡¢ÖÚÊý·Ö±ðΪ177£¬178£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨¢ñ£©ÒÑÖªx2+y2=1£¬Çó2x+3yµÄȡֵ·¶Î§£»
£¨¢ò£©ÒÑÖªa2+b2+c2-2a-2b-2c=0£¬ÇóÖ¤£º$2a-b-c¡Ü3\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{2}{x^2}-2alnx+£¨a-2£©x$£®
£¨1£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©ÔÚ[1£¬e]ÉϵÄ×îСֵºÍ×î´óÖµ£»
£¨2£©µ±a¡Ü0ʱ£¬ÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨3£©ÊÇ·ñ´æÔÚʵÊýa£¬¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬ÇÒx1¡Ùx2£¬¶¼ÓÐ$\frac{{f£¨{x_2}£©-f£¨{x_1}£©}}{{{x_2}-{x_1}}}£¾a$ºã³ÉÁ¢£¬Èô´æÔÚ£¬Çó³öaµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÓÐÏÞ¼¯ºÏSÖÐÔªËØµÄ¸öÊý¼Ç×öcard£¨S£©£¬ÉèA£¬B¶¼ÎªÓÐÏÞ¼¯ºÏ£¬¸ø³öÏÂÁÐÃüÌ⣺
¢ÙA¡ÉB=∅µÄ³äÒªÌõ¼þÊÇcard£¨A¡ÈB£©=card£¨A£©+card£¨B£©
¢ÚA⊆BµÄ±ØÒª²»³ä·ÖÌõ¼þÊÇcard£¨A£©¡Ücard£¨B£©+1
¢ÛA?BµÄ³ä·Ö²»±ØÒªÌõ¼þÊÇcard£¨A£©¡Ücard£¨B£©-1
¢ÜA=BµÄ³äÒªÌõ¼þÊÇcard£¨A£©=card£¨B£©
ÆäÖУ¬ÕæÃüÌâÓУ¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ù¢ÚC£®¢Ú¢ÛD£®¢Ù¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸