精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知圆心在轴上,半径为的圆位于轴的右侧,且与轴相切,

(Ⅰ)求圆的方程;

(Ⅱ)若椭圆的离心率为,且左右焦点为,试探究在圆上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)

 

【答案】

(Ⅰ);(Ⅱ),圆上存在4个点,使得为直角三角形.

【解析】

试题分析:(Ⅰ)求圆的方程,只要求出圆心与半径即可,而已知圆的半径为,圆心在轴上,圆位于轴的右侧,且与轴相切,故圆心为,从而可得圆的方程;(Ⅱ)探究在圆上是否存在点,使得为直角三角形,首先求出的坐标,而是椭圆的左右焦点,须求出椭圆的方程,由题意椭圆的离心率为,可求得,,可得为直角三角形,有圆的方程可知,只需过轴的垂线,与圆的两个交点符合题意,过可作圆的两条切线,与圆的两个切点也符合,从而找到点.

试题解析:(Ⅰ)依题意,设圆的方程为(x-a)2+y2=16(a>0).  (1分)

∵圆与y轴相切,∴a=4,∴圆的方程为(x-4)2+y2=16   (4分)

(Ⅱ)∵椭圆=1的离心率为,∴e===

解得b2=9             (6分)

∴c==4,∴F1(-4,0),F2(4,0)           (7分)

∴F2(4,0)恰为圆心C         (8分)

(i)过轴的垂线,交圆P1,P2,则∠P1F2F1=∠P2F2F1=90°,符合题意;(10分)

(ii)过F1可作圆的两条切线,分别与圆相切于点P3,P4

连接CP3,CP4,则∠F1P3F2=∠F1P4F2=90°,符合题意.    (12分)

综上,圆C上存在4个点P,使得△PF1F2为直角三角形.    (13分)

考点:圆的方程,椭圆方程,探索性问题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案