精英家教网 > 高中数学 > 题目详情

(本小题满分12分)椭圆的左、右焦点分别为,焦距为2,,过作垂直于椭圆长轴的弦长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。

(Ⅰ);(Ⅱ) 。

解析试题分析:(Ⅰ)依题意             2分
解得,∴椭圆的方程为:               4分
(注:也可以由,椭圆定义求得
(Ⅱ)(i)当过直线的斜率不存在时,点,;则;5分
(ii)当过直线的斜率存在时,设斜率为,则直线的方程为
, 由   得:
            7分

         10分
的夹角为钝角时,<0,            11分
情形(i)不满足<0,                12分
考点:本题主要考查椭圆标准方程的求法,直线与椭圆的位置关系,向量的夹角。
点评:求圆锥曲线的标准方程是解析几何的基本问题,在研究直线与椭圆的位置关系中,常常用到韦达定理,以实现整体代换,向量知识常在条件中出现,以达到综合考查的目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知中心在坐标原点O,焦点在轴上,长轴长是短轴长的2倍的椭圆经过点M(2,1)
(Ⅰ)求椭圆的方程;
(Ⅱ)直线平行于,且与椭圆交于A、B两个不同点.
(ⅰ)若为钝角,求直线轴上的截距m的取值范围;
(ⅱ)求证直线MAMBx轴围成的三角形总是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率.
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题10分)双曲线的离心率等于4,且与椭圆有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点(),
(1)求椭圆的方程;
(2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)已知点,直线 交轴于点,点上的动点,过点垂直于的直线与线段的垂直平分线交于点
(Ⅰ)求点的轨迹的方程;(Ⅱ)若 A、B为轨迹上的两个动点,且 证明直线AB必过一定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆)的短轴长与焦距相等,且过定点,倾斜角为的直线交椭圆两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)确定直线轴上截距的范围.

查看答案和解析>>

同步练习册答案