精英家教网 > 高中数学 > 题目详情
18.已知正实数a,b满足:a+b=1,则$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$的最大值是$\frac{{2\sqrt{3}+3}}{3}$.

分析 求出b=1-a,代入得到$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$=$\frac{a+1}{{a}^{2}-a+1}$,求出$\frac{{a}^{2}-a+1}{a+1}$的最小值,从而得到答案.

解答 解:∵正实数a,b满足:a+b=1,
∴b=1-a,
∴$\frac{2a}{{{a^2}+b}}+\frac{b}{{a+{b^2}}}$
=$\frac{2a}{{a}^{2}-a+1}$+$\frac{1-a}{a{+(1-a)}^{2}}$
=$\frac{2a}{{a}^{2}-a+1}$+$\frac{1-a}{{a}^{2}-a+1}$
=$\frac{a+1}{{a}^{2}-a+1}$,
而$\frac{{a}^{2}-a+1}{a+1}$
=(a+1)+$\frac{3}{a+1}$-3
≥2$\sqrt{(a+1)•\frac{3}{a+1}}$-3
=2$\sqrt{3}$-3,
当且仅当(a+1)2=3时“=”成立,
故$\frac{a+1}{{a}^{2}-a+1}$≤$\frac{1}{2\sqrt{3}-3}$=$\frac{{2\sqrt{3}+3}}{3}$,
故答案为:$\frac{{2\sqrt{3}+3}}{3}$.

点评 本题考查了基本不等式的性质,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设复数z1=$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$i,z2=3+4i,则$\frac{{|z}_{1}^{2016}|}{|\overline{{z}_{2}}|}$=(  )
A.$\frac{2}{2015}$B.$\frac{1}{2016}$C.$\frac{1}{25}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.tan18°+tan222°+$\sqrt{3}$tan18°tan222°的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知命题p:$\frac{1}{x-1}$<1,q:x2+(a-1)x-a>0,若p是q的充分不必要条件,则实数a的取值范围是(  )
A.(-2,-1]B.[-2,-1]C.[-3,-1]D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知等差数列{an}的前n项和为Sn,且a2=8,a4=4.
(1)求a9
(2)求Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知i是虚数单位,则复数z=$\frac{4+3i}{1+2i}$的虚部为(  )
A.-iB.11C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列不等式一定成立的是(  )
A.x2+$\frac{1}{4}$>x(x>0)B.x2+1≥2|x|(x∈R)
C.sinx+$\frac{1}{sinx}$≥2(x≠kπ,k∈Z)D.$\frac{1}{{{x^2}+1}}$>1(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=log2|x|.
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性、单调性;(不必证明 )
(3)画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若正实数x,y满足x+$\frac{1}{x}+y+\frac{1}{y}$=5,则xy的取值范围为[$\frac{1}{4}$,4].

查看答案和解析>>

同步练习册答案