精英家教网 > 高中数学 > 题目详情
4.若数列{an}的首项a1=2,且${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),则数列{an}的通项公式是an=$\left\{\begin{array}{l}{2,n=1}\\{-5•(-2)^{n-2},n≥2}\end{array}\right.$.

分析 由${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),可推出Sn=$\frac{2}{3}$an+$\frac{1}{3}$,从而可得{an}是以-5为首项,-2为公比的等比数列,从而解出数列的通项公式.

解答 解:∵${S_{n+1}}=\frac{2}{3}{a_{n+1}}+\frac{1}{3}$(n∈z+),可推出Sn=$\frac{2}{3}$an+$\frac{1}{3}$,n≥2,两式作差的,an+1=$\frac{2}{3}$an+1-$\frac{2}{3}$an
即an+1=-2an
则{an}是以a2为首项,-2为公比的等比数列,数列{an}的首项a1=2,∴a1+a2=$\frac{2}{3}$a2+$\frac{1}{3}$,
a2=-5,
则an=-5•(-2)n-2.n≥2.
数列的通项公式为:${a_n}=\left\{\begin{array}{l}2,n=1\\-5{(-2)^{n-2}},n≥2\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{2,n=1}\\{-5•(-2)^{n-2},n≥2}\end{array}\right.$.

点评 本题考查了数列的通项公式的推导,数列递推关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若tan(α+$\frac{π}{4}$)=2,则tanα的值等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对于0<a<1,给出下列四个不等式(  )
①loga(1+a)<loga(1+$\frac{1}{a}$)②loga(1+a)>loga(1+$\frac{1}{a}$); ③a1+a<a${\;}^{1+\frac{1}{a}}$;④a1+a>a${\;}^{1+\frac{1}{a}}$
其中成立的是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆${C_1}:{x^2}+{y^2}=4$与圆${C_2}:{(x-1)^2}+{(y-3)^2}=4$,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,( M,N分别为切点),若|PM|=|PN|,则a2+b2-6a-4b+13的最小值是$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n个图形包含f(n)个“福娃迎迎”.则f(6)=61.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\sqrt{1-2cos(\frac{π}{2}+3)sin(\frac{π}{2}-3)}$=(  )
A.-sin3-cos3B.sin3-cos3C.sin3+cos3D.cos3-sin3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$cos\sqrt{2},sin\sqrt{2},tan\sqrt{2}$的大小关系是(  )
A.$sin\sqrt{2}<cos\sqrt{2}<tan\sqrt{2}$B.$cos\sqrt{2}<sin\sqrt{2}<tan\sqrt{2}$C.$cos\sqrt{2}<tan\sqrt{2}<sin\sqrt{2}$D.$sin\sqrt{2}<tan\sqrt{2}<cos\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,某公园中间有一块等腰梯形的绿化区ABCD,AB,CD的长度相等,均为2百米,BC的长度为4百米,其中BMN是半径为1百米的扇形,$∠ABC=\frac{π}{3}$.管理部门欲在绿化区ABCD中修建从M到C的观赏小路$\widehat{MP}-PQ-QC$;其中P为$\widehat{MN}$上异于M,N的一点,小路PQ与BC平行,设∠PBC=θ.
(1)用θ表示PQ的长度,并写出θ的范围;
(2)当θ取何值时,才能使得修建的观赏小路$\widehat{MP}-PQ-QC$的总长度最短?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=|-2x+4|-|x+6|.
(1)求不等式f(x)≥0的解集;
(2)若f(x)>a+|x-2|存在实数解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案