精英家教网 > 高中数学 > 题目详情
7.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为(  )
A.4B.4$\sqrt{2}$-1C.2$\sqrt{2}$-2D.2

分析 由题意画出图形,结合两点间的距离公式得答案.

解答 解:如图,
由圆C:(x-1)2+y2=1,圆C′:(x-4)2+(y-4)2=82
得C(1,0),C′(4,4),

则|MN|min=|C′M|-|CC′|-|CN|=8-1-|CC′|=$7-\sqrt{(4-1)^{2}+(4-0)^{2}}=7-5=2$.
故选:D.

点评 本题考查圆与圆的位置关系,考查了两点间的距离公式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届甘肃会宁县一中高三上学期9月月考数学(理)试卷(解析版) 题型:选择题

下列选项中,说法正确的是( )

A.命题“?x0∈R,x-x0≤0”的否定是“?x0∈R,x-x0>0”

B.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件

C.命题“若am2≤bm2,则a≤b”是假命题

D.命题“在△ABC中,若sin A<,则A<”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|4x-1|+|x-m|.
(1)若m=2,解不等式f(x)>12;
(2)若f(x)+3|x-m|>8对一切实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知|A-a|<$\frac{?}{2}$,|B-b|<$\frac{?}{2}$,求证:
(1)|(A+B)-(a+b)|<ε;
(2)|(A-B)-(a-b)|<ε.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an},a2=$\frac{a}{3}$(a为非零常数),an+1=$\frac{{a}_{n}}{3}$+$\frac{a}{{3}^{n}}$,数列{bn},bn=3n-1an,Sn是数列{bn}的前n项的和.
(1)求证:数列{bn}为等差数列;
(2)是否存在实数a、b,使得对任意正整数t,数列{bn}中满足bn+b≤t的最大项恰是第3t-2项?若存在,分别求出a与b的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线3x-4y+9=0与圆x2+y2+2x=0的位置关系是(  )
A.直线过圆心B.相交但不过圆心C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知曲线f(x)=axlnx+bx在(1,f(1))处的切线方程为y=x-1.
(1)求函数f(x)的解析式;
(2)对?x≥1,不等式f(x)≤m(x2-1)(m>0)恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3x-a,g(x)=x2-4x,若g[f(4)]=5,求f[g(2)]的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:0<a1<1,an+1=an-ln(an+1),求证:
(1)0<an+1<an<1;
(2)若a1=$\frac{\sqrt{2}}{2}$,且an+1<$\frac{{a}_{n}^{2}}{2}$,则当n≥2时,an<$\frac{1}{{2}^{n}}$.

查看答案和解析>>

同步练习册答案