精英家教网 > 高中数学 > 题目详情
1.已知数列{an}满足:0<a1<1,an+1=an-ln(an+1),求证:
(1)0<an+1<an<1;
(2)若a1=$\frac{\sqrt{2}}{2}$,且an+1<$\frac{{a}_{n}^{2}}{2}$,则当n≥2时,an<$\frac{1}{{2}^{n}}$.

分析 (1)先用数学归纳法证明0<an<1,n∈N*.又由0<an<1,得an+1-an=an-ln(1+an)-an=-ln(1+an)<0,从而an+1<an
(2)利用累乘法即可证明.

解答 证明:(1)先用数学归纳法证明0<an<1.
①当n=1时,由已知得结论成立
②假设n=k(k∈N+)时0<ak<1成立,则当n=k+1时,设f(x)=x-ln(x+1),
于是f′(x)=1-$\frac{1}{x+1}$在(0,1)上恒有f′(x)>0,所以f(x)在(0,1)上递增,
∴f(0)<f(ak)<f(1)=1-ln2<1,又f(0)=0,从而0<ak+1<1,
这就是说当n=k+1时命题成立,
由①②知0<an<1成立
又an+1-an=-ln(1+an)<0,即an+1<an
综上可得,0<an+1<an<1,n∈N+
(2)∵an+1<$\frac{{a}_{n}^{2}}{2}$,
∴$\frac{{a}_{n+1}}{{a}_{n}}$<$\frac{{a}_{n}}{2}$,
从而当n≥2时,$\frac{{a}_{n}}{{a}_{1}}$=$\frac{{a}_{2}}{{a}_{1}}$×$\frac{{a}_{3}}{{a}_{2}}$×…×$\frac{{a}_{n}}{{a}_{n-1}}$<$\frac{{a}_{1}}{2}$×$\frac{{a}_{2}}{2}$×…×$\frac{{a}_{n-1}}{2}$,
∵a1=$\frac{\sqrt{2}}{2}$,0<an+1<an<1;
∴an<$\frac{{a}_{1}}{2}$×$\frac{{a}_{2}}{2}$×…×$\frac{{a}_{n-1}}{2}$•a1=$\frac{{a}_{1}^{2}}{{2}^{n-1}}$=$\frac{1}{{2}^{n}}$

点评 本题主要考查数列与函数,不等式的综合运用,主要涉及了数学归纳法,导数法,累乘法等常用解题方法,综合性强,要求思路要清,意志力要强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为(  )
A.4B.4$\sqrt{2}$-1C.2$\sqrt{2}$-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角三角形ABC中,∠CAB=$\frac{π}{2}$,AB=2,AC=$\frac{\sqrt{2}}{2}$,DO垂直AB于点O[其中O为原点],且D(0,2),OA=OB,曲线E过C点,一点P在C上运动,且满足|PA|+|PB|的值不变.
(1)求曲线E的方程;
(2)过点D的直线L与曲线E相交于不同的两点M,N,且M在NB之间,使$\frac{DM}{DN}$=λ,试确定实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2+ln(x+b).
(1)当a=0时,曲线y=f(x)与直线y=x+1相切,求b的值;
(2)当b=1时,函数y=f(x)图象上的点都在x-y≥0所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{lnx}{x}$,g(x)=$\frac{m}{x}$-$\frac{3}{{x}^{2}}$-1.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数m的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx<$\frac{2x}{e}$-$\frac{{x}^{2}}{{e}^{x}}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x+3|-|x-1|.
(1)解不等式f(x)≥0;
(2)若f(x)+2|x-1|≥m对任意的实数x均成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线3x+4y-25=0与圆x2+y2=4相离,求圆上一点到直线的最大距离和最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某商场欲经销某种商品,考虑到不同顾客的喜好,决定同时销售A,B两个品牌,根据生产厂家营销策略,结合本地区以往经销该商品的数据统计分析,A品牌的销售利润y1与投入资金x成正比,其关系如图所示,B品牌的销售利润y2与投入资金x的关系为y2=$\frac{3}{4}\sqrt{x}$.
(1)求A品牌的销售利润y1与投入资金x的函数关系式.
(2)该商场计划投入5万元经销该种商品中,并全部投入A,B两个品牌,问:怎样分配这5万元资金,才能使经销该种商品获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图程序输出的结果s=57,则判断框中应填(  )
A.i<7B.i>7C.i≥6D.i>6

查看答案和解析>>

同步练习册答案