分析 (1)由f(x)≥0等价于|x+3|≥|x-1|即(x+3)2≥(x-1)2,即可解不等式f(x)≥0;
(2)要使f(x)+2|x-1|≥m对任意的实数x均成立,则[f(x)+2|x-1|]min≥m即可.
解答 解:(1)由f(x)≥0等价于|x+3|≥|x-1|即(x+3)2≥(x-1)2
化简得:8x≥-8,解得:x≥-1,即原不等式的解集为:{x|x≥-1}
(2)∵f(x)+2|x-1|=|x+3|+|x-1|≥4,
要使f(x)+2|x-1|≥m对任意的实数x均成立,则[f(x)+2|x-1|]min≥m
所以m≤4;
点评 本题考查了绝对值不等式的解法和其几何意义的运用,考查绝对值不等式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 周需求量n | 18 | 19 | 20 | 21 | 22 |
| 频数 | 1 | 2 | 3 | 3 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com