精英家教网 > 高中数学 > 题目详情
11.如图程序输出的结果s=57,则判断框中应填(  )
A.i<7B.i>7C.i≥6D.i>6

分析 模拟执行程序框图,依次写出每次循环得到的s,i的值,当s=57,i=6时,由题意,应该满足条件,退出循环,即可得出结论.

解答 解:模拟执行程序框图,可得
i=12,s=0
满足条件,s=12,i=11
满足条件,s=23,i=10
满足条件,s=33,i=9
满足条件,s=42,i=8
满足条件,s=50,i=7
满足条件,s=57,i=6
此时,由题意,应该满足条件,退出循环,输出S的值为57,则判断框中应填i>6,
故选:D.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:0<a1<1,an+1=an-ln(an+1),求证:
(1)0<an+1<an<1;
(2)若a1=$\frac{\sqrt{2}}{2}$,且an+1<$\frac{{a}_{n}^{2}}{2}$,则当n≥2时,an<$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的左右顶点分别为A(-2,0),B(2,0),椭圆上除A、B外的任一点C满足kAC•kBC=-$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N,在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明现由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,则φ21的值可能为(  )
A.$\frac{π}{8}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的定义域:
(1)f(x)=$\frac{\sqrt{5-x}}{|x|-3}$;
(2)y=$\frac{\sqrt{{x}^{2}-1}+\sqrt{1-{x}^{2}}}{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\sqrt{3}$bcosA-asinB=0.
(1)求角A的大小;
(2)已知c=4,△ABC的面积为6$\sqrt{3}$,求边长a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=31.2,b=2log30.3,c=0.82.3,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线x2=4y,斜率为k的直线l过其焦点F且与抛物线相交于点A(x1,y1),B(x2,y2
(1)求直线L的一般式方程;
(2)求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=mlnx+$\frac{m^2}{x}$(其中m为常数),且x=1是f(x)的极值点.
(Ⅰ)设曲线y=f(x)在($\frac{1}{e}$,f($\frac{1}{e}$))处的切线为l,求l与坐标轴围成的三角形的面积;
(Ⅱ)求证:f(x)>4f′(x).

查看答案和解析>>

同步练习册答案