精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx+
m
x
(x>0)
在(1,+∞)上为增函数,函数g(x)=lnx-mx(x>0)在(1,+∞)上为减函数.
(1)分别求出函数f(x)和g(x)的导函数;
(2)求实数m的值;
(3)求证:当x>0时,xln(1+
1
x
)<1<(x+1)ln(1+
1
x
)
分析:(1)利用导数的运算法则及基本初等函数的导数公式求出f(x),g(x)的导函数;
(2)根据函数的单调性,令f'(x)=
1
x
-
m
x2
=
x-m
x2
≥0恒成立及g'(x)=
1
x
-m
=
1-mx
x
≤0恒成立,求出m的值.
(3)因为当x>0时,1+
1
x
>1,利用(1)中f(x),g(x)的单调性得到当x>0时,xln(1+
1
x
)<1<(x+1)ln(1+
1
x
解答:解:(1)f'(x)=
1
x
-
m
x2
…(2分)
g'(x)=
1
x
-m
=
1-mx
x
…(4分)
(2)因为函数f(x)=lnx+
m
x
(x>0)
在(1,+∞)上为增函数,
所以当x>1时,f'(x)=
1
x
-
m
x2
=
x-m
x2
≥0恒成立,得m≤1.
因为函数g(x)=lnx-mx(x>0)在(1,+∞)上为减函数.
所以当x>1时,g'(x)=
1
x
-m
=
1-mx
x
≤0恒成立,得m≥1.
从而m=1.…(6分)
(3)当x>0时,1+
1
x
>1,
所以由(1)知:f(1+
1
x
)>f(1),即:ln(1+
1
x
)+
x
x+1
>1,
化简得:(1+x)ln(1+
1
x
)>1
g(1+
1
x
)<g(1),即:ln(1+
1
x
)-(1+
1
x
)<-1,
化简得:xln(1+
1
x
)<1.
所以当x>0时,xln(1+
1
x
)<1<(x+1)ln(1+
1
x
).…(8分)
点评:本题考查导函数与函数单调性的关系,当已知函数递增时,令导函数大于等于0;当函数递减时,令导函数小于等于0,求出参数的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案