精英家教网 > 高中数学 > 题目详情
15.平面α,β,γ两两垂直且交于一点O,若空间有一点P到这三个平面的距离分别是3、4、12则点P到点O的距离为13.

分析 OP可看做长方体的对角线,其中长方体的三条棱长分别是3,4,12,由此能求出点P到点O的距离.

解答 解:由题意,OP可看做长方体的对角线,
其中长方体的三条棱长分别是3,4,12,
∴点P到点O的距离PO=$\sqrt{9+16+144}$=13.
故答案为:13.

点评 本题考查点到平面的距离的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=ax2+x(a≠0)与$g(x)={(\frac{a+1}{a})}^{x}$在同一坐标系中的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在xOy平面上,将抛物线弧y=1-x2(0≤x≤1)、x轴、y轴围成的封闭图形记为D,如图中曲边三角形OAB及内部.记D绕y轴旋转一周而成的几何体为Ω,过点(0,y)(0≤y≤1)作Ω的水平截面,所得截面面积为(1-y)π,试构造一个平放的直三棱柱,利用祖暅原理得出Ω的体积值为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+x2
(1)求函数h(x)=f(x)-3x的极值;
(2)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围;
(3)设F(x)=2f(x)-3x2-kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且x0=$\frac{m+n}{2}$,问:函数F(x)在(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在R上的奇函数f(x)满足f(-x)=-f(x),f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的焦点与双曲线$\frac{y^2}{3}$-x2=1的顶点重合,椭圆C的长轴长为4.
(1)求双曲线的实轴,虚轴长及渐近线方程.
(2)求椭圆C的标准方程;
(3)若已知直线y=x+m.当m为何值时,直线与椭圆C有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},Sn为其前n项和,a5=10,S7=56.
(1)求数列{an}的通项公式;
(2)若bn=a1+3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由曲线y=$\sqrt{x}$和直线x+y=2,y=-$\frac{1}{3}$x围成的图形的面积为$\frac{13}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:函数f(x)=lg(ax2-4x+a)的定义域为R;命题q:不等式2x2+x>2+ax,对?x∈(-∞,-1)上恒成立.
(1)若命题p为真命题,求实数a的取值范围;
(2)若“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案