精英家教网 > 高中数学 > 题目详情
3.已知离心率为$\frac{{2\sqrt{3}}}{3}$的双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,若线段OF的垂直平分线与双曲线一条渐近线的交点到另一条渐近线的距离为λc(c为半焦距,λ>0),则实数λ的值是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.2D.3

分析 求出F(c,0),不妨设线段OF的垂直平分线x=$\frac{c}{2}$与渐近线y=$\frac{b}{a}x$的交点为($\frac{c}{2},\frac{bc}{2a}$),它到另一条渐近线的距离为$\frac{\frac{bc}{2}+\frac{bc}{2}}{\sqrt{{a}^{2}+{b}^{2}}}$=b=λc.然后求解λ.

解答 解:由题意,得F(c,0),
不妨设线段OF的垂直平分线x=$\frac{c}{2}$与渐近线y=$\frac{b}{a}x$的交点为($\frac{c}{2},\frac{bc}{2a}$),
因此它到另一条渐近线y=-$\frac{b}{a}x$,即bx+ay=0的距离为$\frac{\frac{bc}{2}+\frac{bc}{2}}{\sqrt{{a}^{2}+{b}^{2}}}$=b=λc.
又由$\frac{c}{a}=\frac{2\sqrt{3}}{3}$与c2=a2+b2可得b=$\frac{1}{2}c$,
所以$λ=\frac{1}{2}$.
故选:A.

点评 本题考查双曲线的简单性质的应用,直线与双曲线的位置关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.函数y=Asin(ωx+φ)的部分图象如图所示,则f(x)=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.长方体ABCD-A1B1C1D1中,$A{A_1}=\sqrt{2}$,AB=1,AD=2,E为BC的中点.设△A1DE的重心为G,问是否存在实数λ,使得$\overrightarrow{AM}=λ\overrightarrow{AD}$,且MG⊥平面A1DE同时成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,且点(-2,$\sqrt{2}$)在椭圆C上.
(1)求椭圆C的方程;
(2)若点B为椭圆的下顶点,直线l与椭圆C交于不同的两点P,Q(异于点B),直线BQ与BP的斜率之和为2,求证:直线l经过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x≤0\\{log_a}x(a>0,a≠1),x>0\end{array}$的图象上关于y轴对称的点至少有3对,则实数a的取值范围是(  )
A.($\frac{{\sqrt{5}}}{5}$,1)B.(0,$\frac{\sqrt{5}}{5}$)C.$(\frac{{\sqrt{3}}}{3}\;,\;\;1)$D.$(0\;,\;\;\frac{{\sqrt{3}}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l:x-y=1与圆M:x2+y2-2x+2y=0相交于A,C两点,点B,D分别在圆M上运动,且位于直线AC两侧,则四边形ABCD面积的最大值为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2=1},B={x|ax=1},若B?A,则a的值为{0,-1,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式组$\left\{\begin{array}{l}x+a+1>0\\ ax>0\end{array}\right.$(a≠0)的解集为∅,则实数a的取值范围是{a|a=0,或a≤-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在10支铅笔中,有8支正品,2支次品,从中任取2支,则在第一次抽的是次品的条件下,第二次抽的是正品的概率是(  )
A.$\frac{1}{5}$B.$\frac{8}{45}$C.$\frac{4}{5}$D.$\frac{8}{9}$

查看答案和解析>>

同步练习册答案