精英家教网 > 高中数学 > 题目详情
14.某校对某班50名学生进行了作业量多少的调查,得到如下列联表(单位:名):喜欢玩电脑游戏与认为作业多少列联表
认为作业多认为作业不多总计
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
总计262450
能否在犯错误的概率不超过0.025的前提下认为喜欢玩电脑游戏与认为作业多之间有关系吗?为什么?
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

分析 根据列联表中的数据,代入求观测值的公式,求出观测值,把观测值同临界值进行比较,得到能在犯错误的概率不超过0.025的前提下认为有关系.

解答 解:能认为有关系…(2分)
∵K2=$\frac{50(18×15-9×8)^{2}}{26×27×23×24}$≈5.585>5.024
∴能在犯错误的概率不超过0.025的前提下认为有关系 …(12分)

点评 本题考查独立性检验的应用,解题的关键是正确求出这组数据的观测值,数字运算的过程中数字比较多,不要出错.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.化简或求值
(1)化简:$\frac{{sin(\frac{π}{2}+α)•cos(\frac{π}{2}-α)}}{cos(π+α)}+\frac{{sin(π-α)•cos(\frac{π}{2}+α)}}{sin(π+α)}$;
(2)已知$-\frac{π}{2}<x<0,sinx+cosx=\frac{1}{5}$,求sinx-cosx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列各点中与(2,$\frac{π}{6}$)不表示极坐标系中同一个点的是(  )
A.(2,-$\frac{11}{6}$π)B.(2,$\frac{13}{6}$π)C.(2,$\frac{11}{6}$π)D.(2,$\frac{-23}{6}$π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.直线y=$\frac{\sqrt{3}}{3}$x与直线x=1的夹角60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+1)=f(-x+3),f(4)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=$\left\{\begin{array}{l}{x+{2}^{x},x≤0}\\{ax-lnx,x>0}\end{array}\right.$,在其定义域上恰有两个零点,则正实数a的值为$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a、b、c分别为角A、B、C的对边.已知tanB=$\frac{3}{4}$,且b=2.
(1)当a=$\frac{5}{3}$时,求角A的大小;
(2)求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设m,n为两条不同的直线,α、β为两个不同的平面.下列命题中,正确的是(  )
A.若m,n与α所成的角相等,则m∥nB.若α⊥β,m∥α,则m⊥β
C.若m⊥α,m∥β,则α⊥βD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,圆O与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆T:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于点M(0,1).
(1)求椭圆T与圆O的方程.
(2)过点M引直线l(斜率存在),若直线l被椭圆T截得的弦长为2.①求直线l的方程;②设P(x,y)为圆O上的点,求点P到直线l的最大距离.

查看答案和解析>>

同步练习册答案