精英家教网 > 高中数学 > 题目详情
9.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+1)=f(-x+3),f(4)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

分析 确定y=f(x)的图象关于x=2对称,构造函数g(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.

解答 解:∵f(x+1)=f(-x+3),
∴f(x+2)=f(-x+2),
∴y=f(x)的图象关于x=2对称
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
设g(x)=$\frac{f(x)}{{e}^{x}}$(x∈R),则g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$
又∵f′(x)<f(x),∴f′(x)-f(x)<0
∴g′(x)<0,∴y=g(x)在定义域上单调递减
∵f(x)<ex
∴g(x)<1
又∵g(0)=$\frac{f(0)}{{e}^{0}}$=1
∴g(x)<g(0)
∴x>0
故选:D.

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设p:f(x)=x2+2mx+1在(0,+∞)内单调递增,q:m≥-5,则p是q的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a=0.76,b=70.6,c=log60.7,则(  )
A.a>b>cB.b>a>cC.c>b>aD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i是虚数单位,设复数z1=1-3i,z2=3-2i,则$\frac{z_1}{z_2}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=cosx({\sqrt{3}sinx-cosx})$.
(1)求函数f(x)的最小正周期和单调递减区间;
(2)记△ABC的内角A,B,C的对应边分别为a,b,c,且f(B)=$\frac{1}{2}$,a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校对某班50名学生进行了作业量多少的调查,得到如下列联表(单位:名):喜欢玩电脑游戏与认为作业多少列联表
认为作业多认为作业不多总计
喜欢玩电脑游戏18927
不喜欢玩电脑游戏81523
总计262450
能否在犯错误的概率不超过0.025的前提下认为喜欢玩电脑游戏与认为作业多之间有关系吗?为什么?
附参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-a+2.
(1)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,b的值;
(2)若b=-1,解关于x的不等式$\frac{f(x)+x+a-2}{ax+b}$+bx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列3,5,7,9,…的一个通项公式是(  )
A.an=n+2B.an=$\frac{(n+1)(n+2)}{2}$C.an=2n+1D.an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在下列A到B的四种对应关系中,能构成A到B的映射关系的是(  )
A.(1)(4)B.(2)(3)C.(2)(4)D.(1)(3)

查看答案和解析>>

同步练习册答案