精英家教网 > 高中数学 > 题目详情

某商场销售某种商品的经验表明,该商品每日的销售量y(单
位:千克)与销售价格x(单位:元/千克)满足关系式y+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
①求a的值;
②若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.

a=2②4元/千克

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商品每件成本9元,售价为30元,每星期卖出144件. 如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比.
已知商品单价降低2元时,一星期多卖出8件.
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).
(1)当a=1,b=-2时,求f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数和函数,其中为参数,且满足.
(1)若,写出函数的单调区间(无需证明);
(2)若方程上有唯一解,求实数的取值范围;
(3)若对任意,存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,判断的单调性,并用定义证明.
(2)若对任意,不等式恒成立,求的取值范围;
(3)讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=3ax2+2bx+c,a+b+c=0,且f(0)·f(1)>0.
(1)求证:-2<<-1.
(2)若x1,x2是方程f(x)=0的两个实根,求|x1-x2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=ax2bxb-1(a≠0).
(1)当a=1,b=-2时,求函数f(x)的零点;
(2)若对任意b∈R,函数f(x)恒有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m、n为正整数,a>0且a≠1,且logam+loga+loga+…+loga=logam+logan,求m、n的值.

查看答案和解析>>

同步练习册答案