精英家教网 > 高中数学 > 题目详情
19.如图所示是一个几何体的直观图、正视图、俯视图、侧视图(其中正视图为直角梯形,俯视图为正方形,侧视图为直角三角形,尺寸如图所示).
(1)求四棱锥P-ABCD的体积;
(2)求证:BD∥平面PEC;
(3)求证:AE⊥平面PBC.

分析 (1)结合三视图,得到几何体的相关棱长,求四棱锥P-ABCD的底面面积和高,然后求出体积;
(2)连接AC交BD于O点,取PC中点F,连接OF,要证明BD∥平面PEC,只需证明BD平行平面PEC内的直线EF即可;
(3)要证AE⊥平面PBG,只需证明PB⊥AE,BC⊥AE即可得证.

解答 (本题满分14分)
解:(1)由几何体的三视图可知,底面ABCD是边长为4的正方形,PA⊥平面ABCD,PA∥EB,
且PA=4$\sqrt{2}$,BE=2$\sqrt{2}$,AB=AD=CD=CB=4,
∴VP-ABCD=$\frac{1}{3}$PA×SABCD=$\frac{1}{3}$×4$\sqrt{2}$×4×4=$\frac{64\sqrt{2}}{3}$.…(4分)
(2)证明:连结AC交BD于O点,取PC中点F,连结OF,
∵EB∥PA,且EB=$\frac{1}{2}$PA,又OF∥PA,且OF=$\frac{1}{2}$PA,
∴EB∥OF,且EB=OF,
∴四边形EBOF为平行四边形,
∴EF∥BD.又EF?平面PEC,BD?平面PEC,所以BD∥平面PEC.…(9分)
(3)∵$\frac{EB}{AB}=\frac{BA}{PA}=\frac{1}{\sqrt{2}}$,∠EBA=∠BAP=90°,
∴△EBA∽△BAP,
∴∠PBA=∠BEA,∴∠PBA+∠BAE=∠BEA+∠BAE=90°,
∴PB⊥AE.
又∵BC⊥平面APEB,
∴BC⊥AE,
∴AE⊥平面PBG,…(14分)

点评 本题考查三视图,几何体的条件,直线与平面垂直和平行的判定,考查空间想象能力,逻辑思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若集合A={2,4},B={1,m2},则“A∩B={4}”是“m=2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.函数f(x)=(sinωx+cosωx)2+2$\sqrt{3}$cos2ωx(ω>0)的最小正周期为$\frac{2π}{3}$.
(1)求ω;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移$\frac{π}{2}$个单位长度得到,求函数y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,cosB=-$\frac{5}{13}$,cosC=$\frac{4}{5}$,tanA的值为(  )
A.$\frac{33}{16}$B.-$\frac{33}{56}$C.$\frac{33}{56}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cos2x+$\sqrt{3}$sinxcosx+1.
(1)求f(x)的值域;
(2)写出f(x)的单调增区间;
(3)若x∈[0,π],求使得f(x)=1成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.反证法证明的关键是在正确的假设下得出矛盾,这个矛盾可以是(  )
①与已知矛盾;②与假设矛盾;③与定义、定理、公理、法则矛盾;④与事实矛盾.
A.①②B.②③C.①②③D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若关于x的方程x2+4xsinθ+atanθ=0($\frac{π}{4}$<θ<$\frac{π}{2}$)有两个相等的实数根.
(1)求实数a的取值范围.
(2)当a=$\frac{6}{5}$时,求cos(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若集合A={x|ax2+2x+4a=0,a∈R}只有2个子集,则a的取值集合是{0,$\frac{1}{2}$,$-\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图是导函数y=f′(x)的图象,则函数f(x)在开区间(a,b)内有极小值点(  )个;哪个区间是减函数(  )
A.1;(x1,x3B.1;(x2,x4C.2;(x4,x6D.2;(x5,x6

查看答案和解析>>

同步练习册答案