精英家教网 > 高中数学 > 题目详情

在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1.
 
(1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;
(2)试在棱CC1上找一点M,使MB⊥AB1.

(1)见解析(2)M为CC1的中点

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,

(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC⊥BC,E、F分别在线段上,B1E=3EC1,AC=BC=CC1=4.

(1)求证:BC⊥AC1
(2)试探究:在AC上是否存在点F,满足EF//平面A1ABB1,若存在,请指出点F的位置,并给出证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直四棱柱ABCDA1B1C1D1中,底面ABCD是菱形.求证:平面B1AC∥平面DC1A1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥的底面是平行四边形,,,且.若中点,为线段上的点,且.

(1)求证:平面
(2)求PC与平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB、CD均为圆O的直径,CE⊥圆O所在的平面,BF∥CE.求证:

(1)平面BCEF⊥平面ACE;
(2)直线DF∥平面ACE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABCA1B1C1中,已知∠ACB=90°,M为A1B与AB1的交点,N为棱B1C1的中点.
 
(1)求证:MN∥平面AA1C1C;
(2)若AC=AA1,求证:MN⊥平面A1BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DEBCDCBCDEBC.

(1)证明:EO∥平面ACD
(2)证明:平面ACD⊥平面BCDE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P­ABCD中,PA⊥底面ABCDACCD,∠DAC=60°,ABBCACEPD的中点,FED的中点.
 
(1)求证:平面PAC⊥平面PCD
(2)求证:CF∥平面BAE.

查看答案和解析>>

同步练习册答案