分析 判断三角函数的符号,角所在象限,利用同角三角函数基本关系式化简求解即可.
解答 解:sin2α<0,cosα<0,
可得sinα>0,cosα<0,α在第二象限.
cosα$\sqrt{\frac{1-sinα}{1+sinα}}$+sinα$\sqrt{\frac{1-cosα}{1+cosα}}$
=cosα•$\frac{1-sinα}{|cosα|}$+sinα•$\frac{1-cosα}{|sinα|}$
=-1+sinα+1-cosα
=sinα-cosα
=$\sqrt{2}$sin($α-\frac{π}{4}$).
故答案为:$\sqrt{2}$sin($α-\frac{π}{4}$).
点评 本题考查三角函数的化简求值,两角和与差的三角函数的应用,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | ∠B=60°的三角形 | ||
| C. | 等腰三角形或∠B=60°的三角形 | D. | 等腰直三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\root{9}{4}$,$\root{4}{3}$) | B. | (1,$\root{9}{4}$] | C. | [$\root{9}{4}$,$\root{7}{3}$] | D. | (1,$\root{4}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com