精英家教网 > 高中数学 > 题目详情
(2012•怀柔区二模)二项式(x2+
1x
5的展开式中含x4的项的系数是
10
10
(用数字作答).
分析:先求出二项式(x2+
1
x
5的展开式中通项公式,令x的系数等于4,求出r的值,即可求得展开式中含x4的项的系数.
解答:解:二项式(x2+
1
x
5的展开式中通项公式为 Tr+1=
C
r
5
 x10-2r x-r=
C
r
5
x10-3r
令 10-3r=4,可得 r=2,
∴展开式中含x4的项的系数是
C
2
5
=10,
故答案为10.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•怀柔区二模)y=(sinx+cosx)2-1是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀柔区二模)如图,在四棱锥S-ABCD中,底面ABCD是正方形,四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(1)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(2)求证:平面BED⊥平面SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀柔区二模)函数y=(sinx+cosx)2-1是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀柔区二模)当x∈(1,2)时,不等式(x-1)2<logax恒成立,则实数a的取值范围是
(1,2]
(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•怀柔区二模)手表的表面在一平面上,整点1,2,…,12这12个数字等间隔地分布在半径为
2
2
的圆周上,从整点i到整点(i+1)的向量记作
titi+1
,则
t1t2
t2t3
+
t2t3
t3t4
+…+
t12t1
t1t2
=
6
3
-9
6
3
-9

查看答案和解析>>

同步练习册答案