| A. | -$\frac{π}{4}$ | B. | -$\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由题意可知,函数y=2sin(3x+φ)的对称轴方程为3x+φ=kπ+$\frac{π}{2}$,由此求得x,结合题意再求得φ的值.
解答 解:函数y=2sin(3x+φ)(|φ|<$\frac{π}{2}$)的对称轴方程为:
3x+φ=kπ+$\frac{π}{2}$,k∈Z;
解得x=$\frac{kπ-φ}{3}$+$\frac{π}{6}$,k∈Z;
又函数y=2sin(3x+φ),|φ|<$\frac{π}{2}$的一条对称轴为x=-$\frac{π}{12}$,
由$\frac{kπ-φ}{3}$+$\frac{π}{6}$=-$\frac{π}{12}$,
得φ=kπ+$\frac{3π}{4}$,
当k=-1时,φ=-$\frac{π}{4}$符合题意.
故选:A.
点评 本题考查了函数y=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{4}{3}$ | D. | $\frac{14}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x,g(x)=($\sqrt{x}$)2 | B. | f(x)=x2,g(x)=(x+1)2 | C. | f(x)=0,g(x)=$\sqrt{x-1}+\sqrt{1-x}$ | D. | f(x)=$\sqrt{{x}^{2}}$,g(x)=|x| |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com