精英家教网 > 高中数学 > 题目详情

已知y=f(x)是偶函数,且在[0,+∞)上是减函数,则f(1-x2)是增函数的区间是


  1. A.
    [0,+∞)
  2. B.
    (-∞,0]
  3. C.
    [-1,0)∪(1,+∞)
  4. D.
    (-∞,-1]∪(0,1]
D
分析:y=f(x)是偶函数,且在[0,+∞)上是减函数,∴在(-∞,0]是增函数,
复合函数的单调性:y=f(t),t=u(x),当f(t)与u(x)都是增函数,或都是减函数时,
y=f(u(x))才是增函数.
解答:∵y=f(x)是偶函数,且在[0,+∞)上是减函数,
∴在(-∞,0]是增函数,
令t=1-x2 ,要使f(t)是增函数,应有t≤0 时t是增函数,或者t≥0时,t是减函数.
∵t≤0时,有 x≥1 或x≤-1,
t=1-x2 在(-∞,-1]上是增函数,f(1-x2)是增函数,
t≥0时,1≥x≥-1,
t=1-x2 在(0,1]上是减函数,f(1-x2)是增函数,
则f(1-x2)是增函数的区间是 (-∞,-1]∪(0,1],
故选 D.
点评:本题考查函数的单调性和奇偶性的应用,对复合函数,只有内层函数和外层函数都是增函数或都是减函数时,它才是增函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案