精英家教网 > 高中数学 > 题目详情
已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.
分析:(1)令a=b=1,可得f(1)=f(1)+f(1),解之可得f(1)=0;
(2)令a=b=-1,代入可得f(-1)=0,再令a=x,b=-1,代入可得f(-x)=x f(-1)-f(x)=-f(x),由奇函数的定义可得.
解答:解:(1)由题意令a=b=1,可得f(1)=f(1)+f(1),∴f(1)=0
(2)y=f(x)是奇函数,下面证明:
令a=b=-1,可得f(1)=-f(-1)-f(-1),所以f(-1)=0;
令a=x,b=-1,所以f(-x)=x f(-1)-f(x)=-f(x);
∴y=f(x)是奇函数.
点评:本题考查抽象函数奇偶性的判断,准确赋值是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+
5x
的定义域为(0,+∞).设点P是函数图象上的任意一点,过点P分别作直线y=2x和y轴的垂线,垂足分别为M、N.
(1)|PM|•|PN|是否为定值?若是,求出该定值;若不是,说明理由;
(2)设点O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
ax
的定义域为(0,+∞),a>0且当x=1时取得最小值,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案