精英家教网 > 高中数学 > 题目详情
13.函数$y=2{sin^2}x+2sinx-\frac{1}{2}$,$x∈[{\frac{π}{6},\frac{5π}{6}}]$的最小值为1.

分析 令t=sinx换元,求出t的范围,然后利用配方法求得答案.

解答 解:令t=sinx,∵$x∈[{\frac{π}{6},\frac{5π}{6}}]$,
∴t∈[$\frac{1}{2}$,1],
则原函数化为f(t)=$2{t}^{2}+2t-\frac{1}{2}$=$2(t+\frac{1}{2})^{2}-1$,t∈[$\frac{1}{2}$,1],
∴当t=$\frac{1}{2}$时,f(t)min=1.
故答案为:1.

点评 本题考查三角函数的最值,考查了配方法和换元法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.某海滨游乐场出租快艇的收费办法如下:不超过十分钟收费80元;超过十分钟,超过部分按每分钟10元收费(对于其中不足一分钟的部分,若小于0.5分钟则不收费,若大于或等于0.5分钟则按一分钟收费),小茗同学为该游乐场设计了一款收费软件,程序框图如图所示,其中x(分钟)为航行时间,y(元)为所收费用,用[x]表示不大于x的最大整数,则图中①处应填(  )
A.y=10[x]B.y=10[x]-20C.y=10[x-$\frac{1}{2}$]-20D.y=10[x+$\frac{1}{2}$]-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.
(1)当a=1时,求f(x)在点(1,1)处的切线方程.
(2)如果对任意的$s,t∈[\frac{1}{2},2]$,都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,已知点S(0,3),SA,SB与圆C:x2+y2-my=0(m>0)和抛物线x2=-2py(p>0)都相切,切点分别为M,N和A,B,SA∥ON,则点A到抛物线准线的距离为(  )
A.4B.2$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.时间经过10分钟,则分针转过的角等于(  )
A.-$\frac{π}{3}$B.$\frac{π}{3}$C.-$\frac{π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(Ⅰ) 若a=-2,求A∩∁RB;   
(Ⅱ) 若A∪B=B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为(  )
A.πB.$\frac{π}{ω}$C.$\frac{π}{2ω}$D.与a有关的值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\frac{a+2i}{i}$=b+i(a,b∈R),其中i为虚数单位,则a2+b2=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率与双曲线$\frac{{y}^{2}}{3}$-x2=1的离心率互为倒数,且长轴长为4.
(1)求椭圆C1的方程;
(2)在椭圆C1落在第一象限的图象上任取一点作C1的切线l,求l与坐标轴围成的三角形的面积的最小值.

查看答案和解析>>

同步练习册答案