精英家教网 > 高中数学 > 题目详情
4.设f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.
(1)当a=1时,求f(x)在点(1,1)处的切线方程.
(2)如果对任意的$s,t∈[\frac{1}{2},2]$,都有f(s)≥g(t)成立,求实数a的取值范围.

分析 (1)求出函数的导数,得到f′(1)的值,代入切线方程即可;
(2)求出g(x)的导数,得到g(x)的单调区间,从而求出g(x)的最大值,问题等价于a≥x-x2lnx恒成立,记h(x)=x-x2lnx,根据函数的单调性求出a的范围即可.

解答 解:(1)当a=1时,$f(x)=\frac{1}{x}+xlnx$…(1分),
$f'(x)=lnx+1-\frac{1}{x^2},x∈(0,+∞)$…(2分)
函数f(x)在(1,1)处的切线的斜率,
∴k=f'(1)=0,又切点为(1,1)…(3分)
所以f(x)在(1,1)处的切线方程为y=1…(4分)
(2)对于函数g(x)=x3-x2-3,g′(x)=3x(x-$\frac{2}{3}$),x∈[$\frac{1}{2}$,2],
令g′(x)=0,得x=0或x=$\frac{2}{3}$   …(5分)
当x变化时,g′(x),g(x)变化情况如下表:

x$\frac{1}{2}$($\frac{1}{2}$,$\frac{2}{3}$)$\frac{2}{3}$($\frac{2}{3}$,2)2
g′(x)-0+
g(x)-3递减极(最)小值-$\frac{85}{27}$递增1
由上表可知:g(x)min=g($\frac{2}{3}$)=-$\frac{85}{27}$,g(x)max=g(2)=1,…(6分)
所以在区间[$\frac{1}{2}$,2]上,g(x)的最大值为g(2)=1.
因此,原问题等价于当x∈[$\frac{1}{2}$,2]时,f(x)≥1恒成立
等价于a≥x-x2lnx恒成立,…(7分)
记h(x)=x-x2lnx,h′(x)=1-2xlnx-x,h′(1)=0…(8分)
记m(x)=1-2xlnx-x,m′(x)=-3-2lnx,由于x∈[$\frac{1}{2}$,2],
m′(x)=-3-2lnx<0,所以m(x)=h′(x)=1-2xlnx-x在[$\frac{1}{2}$,2]上递减,
当x∈[$\frac{1}{2}$,1)时,h′(x)>0,x∈(,1,2]时,h′(x)<0,
即函数h(x)=x-x2lnx在区间[$\frac{1}{2}$,1)上递增,在区间(1,2]上递减,
所以h(x)max=h(1)=1,…(9分)
所以a≥1.(10分)

点评 本题考查了曲线的切线方程问题,考查导数的应用、函数的单调性以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点(1,$\frac{\sqrt{3}}{2}$)在该椭圆上.
(1)求椭圆的方程;
(2)不垂直坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P(0,-$\frac{3}{2}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.曲线y=x3的拐点坐标为(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(n)=ncos$\frac{2nπ}{3}$,则f(1)+f(2)+f(3)+…+f(2016)=1008.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知(1-2x)5(1+ax)4的展开式中x的系数为2,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知抛物线C:x2=4y,直线l1与C相交于A,B两点,线段AB与它的中垂线l2交于点G(a,1)(a≠0).
(Ⅰ)求证:直线l2过定点,并求出该定点坐标;
(Ⅱ)设l2分别交x轴,y轴于点M,N,是否存在实数a,使得A,M,B,N四点在同一个圆上,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:x2-2x-3≥0;命题q:0<x<4.若q是假命题,p∨q是真命题,则实数x的取值范围为(  )
A.(-∞,-1]∪[4,+∞)B.(-∞,-1]∪[3,+∞)C.[-1,0]∪[3,4]D.(-∞,0]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数$y=2{sin^2}x+2sinx-\frac{1}{2}$,$x∈[{\frac{π}{6},\frac{5π}{6}}]$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若存在两个正实数x,y,使得x+a(y-2ex)(lny-lnx)=0成立,其中e为自然对数的底数,则实数a的取值范围是(  )
A.(-∞,0)∪[$\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$]C.[$\frac{1}{e}$,+∞)D.(-∞,0)

查看答案和解析>>

同步练习册答案