·ÖÎö £¨1£©ÓÉÍÖÔ²Ëù¹ýµãA¿ÉÇóµÃbÖµ£¬ÓÉÀëÐÄÂʼ°a2=b2+c2¿ÉÇóµÃaÖµ£¬´Ó¶øµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ìy=kx+t¼°A¡¢BµãµÄ×ø±ê£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬»¯¼òÕûÀí¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí·Ö±ðÇóµÃx1+x2ºÍx1•x3µÄÖµ£¬Ð´³öy1+y2ºÍy1•y2µÄ±í´ïʽ£¬ÓÉÌâÒâABΪֱ¾¶µÄÔ²¹ýԵ㣬¿ÉÖª$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê»¯¼òÕûÀí5t2=4+4k2£¬¡÷£¾0£¬½âµÃt£¼-$\frac{\sqrt{3}}{2}$»òt£¾$\frac{\sqrt{3}}{2}$£¬Éè³öÖеã×ø±ê£¬ÓÉÖеã×ø±ê¹«Ê½¼°Ö±ÏßPDÓëÖ±Ïßl´¹Ö±£¬ÇóµÃtµÄÖµ£¬¼´¿ÉÇóµÃkµÄÖµ£¬Ð´³öÖ±Ïß·½³Ì£®
½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\end{array}\right.$£¬a2=b2+c2£¬½âµÃ£ºa=2£¬b=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}+{y}^{2}=1$£® ¡£¨4·Ö£©
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$ÏûÈ¥yµÃ£º£¨1+4k2£©x2+8ktx+4t2-4=0£¬
ÔòÓÉ¡÷£¾0⇒4k2+1£¾t2£¬
x1+x2=$\frac{-8kt}{1+4{k}^{2}}$£¬x1•x2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$£¬¡£¨6·Ö£©
y1+y2=kx1+t+kx2+t=k£¨x1+x2£©+2t=$\frac{2t}{1+4{k}^{2}}$£¬
y1•y2=£¨kx1+t£©¡Á£¨kx2+t£©=k2x1x2+kt£¨x1+x2£©+t2£¬
=k2¡Á$\frac{4{t}^{2}-4}{1+4{k}^{2}}$+kt£¨$\frac{-8kt}{1+4{k}^{2}}$£©+t2£¬
=$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$£¬
¡ßÒÔABΪֱ¾¶µÄÔ²¹ý×ø±êԵ㣬ËùÒÔ$\overrightarrow{OA}•\overrightarrow{OB}=0$⇒x1x2+y1y2=0£¬
¡àx1x2+y1y2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$+$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$=0£¬
¡à5t2=4+4k2£¬¡£¨8·Ö£©
¡÷£¾0⇒4k2+1£¾t2£¬t£¼-$\frac{\sqrt{3}}{2}$»òt£¾$\frac{\sqrt{3}}{2}$£¬
ÓÖÉèABµÄÖеãΪD£¨m£¬n£©£¬ÔòÓУº$\left\{\begin{array}{l}{m=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{4kt}{1+4{k}^{2}}}\\{n=\frac{{y}_{1}+{y}_{2}}{2}=\frac{t}{1+4{k}^{2}}}\end{array}\right.$£¬
¡ßÖ±ÏßPDÓëÖ±Ïßl´¹Ö±£¬ËùÒÔ${k}_{PD}=-\frac{1}{k}$=$\frac{-\frac{3}{2}-n}{-m}$⇒$\frac{t}{1+4{k}^{2}}$=$\frac{1}{2}$£¬¡£¨10·Ö£©
ÓÉ$\left\{\begin{array}{l}{\frac{t}{1+4{k}^{2}}=\frac{1}{2}}\\{5{t}^{2}=4+4{k}^{2}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{{t}_{1}=1}\\{{t}_{2}=-\frac{3}{5}}\end{array}\right.$£¬
µ±t=-$\frac{3}{5}$ʱ£¬¡÷£¼0ÉáÈ¥
µ±t=1ʱ£¬k=¡À$\frac{1}{2}$£¬
¡àËùÇóÖ±Ïß·½³ÌΪy=$\frac{1}{2}$x+1»òy=-$\frac{1}{2}$x+1£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°Ö±ÏßÓëÍÖԲλÖùØÏµ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬¿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 60 | B£® | 90 | C£® | 150 | D£® | 120 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [k¦Ð-$\frac{¦Ð}{12}$£¬k¦Ð+$\frac{5¦Ð}{12}$]£¨k¡ÊZ£© | B£® | [k¦Ð-$\frac{7¦Ð}{12}$£¬k¦Ð-$\frac{¦Ð}{12}$]£¨k¡ÊZ£© | ||
| C£® | [$\frac{2k¦Ð}{3}$-$\frac{¦Ð}{18}$£¬$\frac{2k¦Ð}{3}$+$\frac{5¦Ð}{18}$]£¨k¡ÊZ£© | D£® | [$\frac{2k¦Ð}{3}$-$\frac{7¦Ð}{18}$£¬$\frac{2k¦Ð}{3}$-$\frac{¦Ð}{18}$]£¨k¡ÊZ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ïཻ | B£® | ÏàÇÐ | C£® | ÏàÀë | D£® | ²»È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=10[x] | B£® | y=10[x]-20 | C£® | y=10[x-$\frac{1}{2}$]-20 | D£® | y=10[x+$\frac{1}{2}$]-20 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com