20£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬Çҵ㣨1£¬$\frac{\sqrt{3}}{2}$£©ÔÚ¸ÃÍÖÔ²ÉÏ£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©²»´¹Ö±×ø±êÖáµÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÒÔABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬ÇÒÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏß½»yÖáÓÚµãP£¨0£¬-$\frac{3}{2}$£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨1£©ÓÉÍÖÔ²Ëù¹ýµãA¿ÉÇóµÃbÖµ£¬ÓÉÀëÐÄÂʼ°a2=b2+c2¿ÉÇóµÃaÖµ£¬´Ó¶øµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ìy=kx+t¼°A¡¢BµãµÄ×ø±ê£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬»¯¼òÕûÀí¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí·Ö±ðÇóµÃx1+x2ºÍx1•x3µÄÖµ£¬Ð´³öy1+y2ºÍy1•y2µÄ±í´ïʽ£¬ÓÉÌâÒâABΪֱ¾¶µÄÔ²¹ýÔ­µã£¬¿ÉÖª$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¸ù¾ÝÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê»¯¼òÕûÀí5t2=4+4k2£¬¡÷£¾0£¬½âµÃt£¼-$\frac{\sqrt{3}}{2}$»òt£¾$\frac{\sqrt{3}}{2}$£¬Éè³öÖеã×ø±ê£¬ÓÉÖеã×ø±ê¹«Ê½¼°Ö±ÏßPDÓëÖ±Ïßl´¹Ö±£¬ÇóµÃtµÄÖµ£¬¼´¿ÉÇóµÃkµÄÖµ£¬Ð´³öÖ±Ïß·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâµÃ$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{1}{{a}^{2}}+\frac{3}{4{b}^{2}}=1}\end{array}\right.$£¬a2=b2+c2£¬½âµÃ£ºa=2£¬b=1£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}+{y}^{2}=1$£®                      ¡­£¨4·Ö£©
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+t£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+t}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$ÏûÈ¥yµÃ£º£¨1+4k2£©x2+8ktx+4t2-4=0£¬
ÔòÓÉ¡÷£¾0⇒4k2+1£¾t2£¬
x1+x2=$\frac{-8kt}{1+4{k}^{2}}$£¬x1•x2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$£¬¡­£¨6·Ö£©
y1+y2=kx1+t+kx2+t=k£¨x1+x2£©+2t=$\frac{2t}{1+4{k}^{2}}$£¬
y1•y2=£¨kx1+t£©¡Á£¨kx2+t£©=k2x1x2+kt£¨x1+x2£©+t2£¬
=k2¡Á$\frac{4{t}^{2}-4}{1+4{k}^{2}}$+kt£¨$\frac{-8kt}{1+4{k}^{2}}$£©+t2£¬
=$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$£¬
¡ßÒÔABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µã£¬ËùÒÔ$\overrightarrow{OA}•\overrightarrow{OB}=0$⇒x1x2+y1y2=0£¬
¡àx1x2+y1y2=$\frac{4{t}^{2}-4}{1+4{k}^{2}}$+$\frac{{t}^{2}-4{k}^{2}}{1+4{k}^{2}}$=0£¬
¡à5t2=4+4k2£¬¡­£¨8·Ö£©
¡÷£¾0⇒4k2+1£¾t2£¬t£¼-$\frac{\sqrt{3}}{2}$»òt£¾$\frac{\sqrt{3}}{2}$£¬
ÓÖÉèABµÄÖеãΪD£¨m£¬n£©£¬ÔòÓУº$\left\{\begin{array}{l}{m=\frac{{x}_{1}+{x}_{2}}{2}=-\frac{4kt}{1+4{k}^{2}}}\\{n=\frac{{y}_{1}+{y}_{2}}{2}=\frac{t}{1+4{k}^{2}}}\end{array}\right.$£¬
¡ßÖ±ÏßPDÓëÖ±Ïßl´¹Ö±£¬ËùÒÔ${k}_{PD}=-\frac{1}{k}$=$\frac{-\frac{3}{2}-n}{-m}$⇒$\frac{t}{1+4{k}^{2}}$=$\frac{1}{2}$£¬¡­£¨10·Ö£©
ÓÉ$\left\{\begin{array}{l}{\frac{t}{1+4{k}^{2}}=\frac{1}{2}}\\{5{t}^{2}=4+4{k}^{2}}\end{array}\right.$½âµÃ$\left\{\begin{array}{l}{{t}_{1}=1}\\{{t}_{2}=-\frac{3}{5}}\end{array}\right.$£¬
µ±t=-$\frac{3}{5}$ʱ£¬¡÷£¼0ÉáÈ¥
µ±t=1ʱ£¬k=¡À$\frac{1}{2}$£¬
¡àËùÇóÖ±Ïß·½³ÌΪy=$\frac{1}{2}$x+1»òy=-$\frac{1}{2}$x+1£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±Ïß·½³Ì¡¢ÍÖÔ²·½³Ì¼°Ö±ÏßÓëÍÖԲλÖùØÏµ£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²é·ÖÀàÌÖÂÛ˼Ï룬¿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬×ÛºÏÐÔÇ¿£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬µãF1£¬F2·Ö±ðÊÇÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬µãAÊÇ϶¥µã£¬Å×ÎïÏßC2£ºy=x2-1ÓëxÖá½»ÓÚµãF1£¬F2£¬ÓëyÖá½»ÓÚµãB£¬ÇÒµãBÊÇÏß¶ÎOAµÄÖе㣬µãNΪÅ×ÎïÏßÉÏC2µÄÒ»¶¯µã£¬¹ýµãN×÷Å×ÎïÏßC2µÄÇÐÏß½»ÍÖÔ²C1ÓÚP£¬QÁ½µã£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÈôµãM£¨0£¬-$\frac{4}{5}$£©£¬Çó¡÷MPQÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬¹ýÓÒ½¹µãFÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²CÏཻÓÚM£¬NÁ½µã£¬ÇÒ|MN|=3£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl¾­¹ýµãFÇÒбÂÊΪk£¬lÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÓëÒÔÍÖÔ²CµÄÓÒ¶¥µãEΪԲÐĵÄÔ²ÏཻÓÚP£¬QÁ½µã£¨A£¬P£¬B£¬Q×ÔÏÂÖÁÉÏÅÅÁУ©£¬OÎª×ø±êÔ­µã£®Èô$\overrightarrow{OA}$•$\overrightarrow{OB}$=-$\frac{9}{5}$£¬ÇÒ|AP|=|BQ|£¬ÇóÖ±ÏßlºÍÔ²EµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖª·½³Ì$\frac{{x}^{2}}{5-2m}$+$\frac{{y}^{2}}{m+1}$=1±íʾÍÖÔ²£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³Ñ§Ð£ÎªÁ˸üºÃµÄÅàÑø¼â×ÓÉú£¬Ê¹ÆäÈ«Ãæ·¢Õ¹£¬¾ö¶¨ÓÉ3Ãû½Ìʦ¶Ô5¸ö¼â×ÓÉú½øÐС°°ü½Ì¡±£¬ÒªÇóÿÃû½ÌʦµÄ¡°°ü½Ì¡±Ñ§Éú²»³¬¹ý2ÈË£¬Ôò²»Í¬µÄ¡°°ü½Ì¡±·½°¸ÓУ¨¡¡¡¡£©
A£®60B£®90C£®150D£®120

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®°Ñº¯Êýf£¨x£©=cos£¨¦Øx+$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{2¦Ð}{3}$¸öµ¥Î»³¤¶ÈºóÓëԭͼÏóÖØºÏ£¬Ôòµ±¦ØÈ¡×îСֵʱ£¬f£¨x£©µÄµ¥µ÷µÝ¼õÇø¼äÊÇ£¨¡¡¡¡£©
A£®[k¦Ð-$\frac{¦Ð}{12}$£¬k¦Ð+$\frac{5¦Ð}{12}$]£¨k¡ÊZ£©B£®[k¦Ð-$\frac{7¦Ð}{12}$£¬k¦Ð-$\frac{¦Ð}{12}$]£¨k¡ÊZ£©
C£®[$\frac{2k¦Ð}{3}$-$\frac{¦Ð}{18}$£¬$\frac{2k¦Ð}{3}$+$\frac{5¦Ð}{18}$]£¨k¡ÊZ£©D£®[$\frac{2k¦Ð}{3}$-$\frac{7¦Ð}{18}$£¬$\frac{2k¦Ð}{3}$-$\frac{¦Ð}{18}$]£¨k¡ÊZ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ö±Ïßy=kx-k+1ÓëÍÖÔ²$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{3}$=1µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÏàÇÐC£®ÏàÀëD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ä³º£±õÓÎÀÖ³¡³ö×â¿ìͧµÄÊշѰ취ÈçÏ£º²»³¬¹ýÊ®·ÖÖÓÊÕ·Ñ80Ôª£»³¬¹ýÊ®·ÖÖÓ£¬³¬¹ý²¿·Ö°´Ã¿·ÖÖÓ10ÔªÊÕ·Ñ£¨¶ÔÓÚÆäÖв»×ãÒ»·ÖÖӵIJ¿·Ö£¬ÈôСÓÚ0.5·ÖÖÓÔò²»ÊÕ·Ñ£¬Èô´óÓÚ»òµÈÓÚ0.5·ÖÖÓÔò°´Ò»·ÖÖÓÊÕ·Ñ£©£¬Ð¡ÜøÍ¬Ñ§Îª¸ÃÓÎÀÖ³¡Éè¼ÆÁËÒ»¿îÊÕ·ÑÈí¼þ£¬³ÌÐò¿òͼÈçͼËùʾ£¬ÆäÖÐx£¨·ÖÖÓ£©Îªº½ÐÐʱ¼ä£¬y£¨Ôª£©ÎªËùÊÕ·ÑÓã¬ÓÃ[x]±íʾ²»´óÓÚxµÄ×î´óÕûÊý£¬ÔòͼÖТٴ¦Ó¦Ì¡¡¡¡£©
A£®y=10[x]B£®y=10[x]-20C£®y=10[x-$\frac{1}{2}$]-20D£®y=10[x+$\frac{1}{2}$]-20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Éèf£¨x£©=$\frac{a}{x}$+xlnx£¬g£¨x£©=x3-x2-3£®
£¨1£©µ±a=1ʱ£¬Çóf£¨x£©Ôڵ㣨1£¬1£©´¦µÄÇÐÏß·½³Ì£®
£¨2£©Èç¹û¶ÔÈÎÒâµÄ$s£¬t¡Ê[\frac{1}{2}£¬2]$£¬¶¼ÓÐf£¨s£©¡Ýg£¨t£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸